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Abstract

The words which comprise human language, are themselves complex units. Each carries meaning in isolation,
but their structure is often altered to accommodate larger compositions, according to some set of grammatical
rules. The processes that determine how the word is formed, and for which occasions it applies, are heavily
patterned. Human beings, whether conscious of it or not, can leverage these patterns to quickly generate new
word-forms when situations necessitate them. Neural language models, as used in neural machine translation
systems, likely do not learn these patterns and show limited capacity in decomposing words as humans
would. Instead, they merely learn to associate certain string segments with others, imitating the data used to
train them. Morphologically rich languages, with very complex word-formation processes, have word-forms
that occur only in rare situations. As a result, translation performance suffers when neural language models
are required to produce word forms it has not seen before.

This thesis explores these morphological word formation processes, and how neural language models
interact with them. Ultimately, it seeks to adapt pre-trained neural machine translation models, towards
greater understanding of morphology. The requirement of pre-trained systems, a practical necessity for
many researchers, invalidates previous techniques presented for this task. As such, a novel gradient-based
meta-learning framework is formulated, which only alters the sampling method to incorporate morphological
information implicitly. This process is coined ‘morphological cross-transfer’, and separates meaning from
function in the learning phase. For this, strong automated morphological analyzers are required. This is
covered in detail, and neural systems for this task are re-implemented, before verifying their usage on natural
language corpora. A second required component is a measurable notion of morphological competence.
This too is covered in some detail, presenting a novel methodology that extends easily to designing task
samplers typically found in meta-learning setups. Finally, experiments with morphological cross-transfer
indicate slightly improved translation systems, and slightly improved dedicated morphological inflectors,
although the objectives are not achieved simultaneously. This opens up new avenues of research into post-hoc
adaptation techniques for providing neural language models with desired inductive biases.
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Introduction 1

Neural machine translation (NMT) considers the application deep learn-
ing methods and models to translate text in one language, the source,
to another, the target. It is an instance of sequence-to-sequence learning
(seq2seq), typically consisting of a single model, itself containing a source-
language specific encoder, and a target-language specific decoder. The
encoder considers the entire source-side string, and compresses it into a
variable length hidden representation. The decoder is asked to predict,
from the encoder’s message (typically pooled by an attention mechanism),
and all previously predicted tokens, the next most likely token. Omitting
some details, this process is repeated until some boundary is reached, at
which point the translation is considered complete. While general, this
setup is by no means the only available for generating translations, but
since its popularization by Bahdanau, Cho, and Bengio [1], it has seen
tremendous success, even with newer, vastly larger models [2].

The properties of the source- and target-side languages need not match.
The mismatch of certain properties likely has more effect on generated
translations than others. One likely determinant of translation quality
is the morphologically complexity of the considered languages. Mor-
phology controls how parts of a word combine to create new words
with specific meanings. Morphologically rich or complex languages can
attach many new meanings to root words, whereas morphologically poor
languages do so through many, less complex words.

Unfortunately, historically NMT research is driven by languages either
close in morphological complexity, or ones similarly impoverished. An
especially prominent culprit is English, a morphologically poor language
that dominates parallel corpora. As a result, modern architectures contain
no explicit inductive bias towards the word formation processes prevalent
in morphologically rich languages. Instead, these systems only associate
certain sequence segments with others, with no assumptions

Deep learning systems ‘learn’ by applying patterns found in past expe-
riences. Without past experiences, an inductive bias can extend those
patterns to generalize well to novel situations. Specifically for morpho-
logically rich languages, this is crucial, as increased complexity implies
new words are likely in new situations. Rephrased, there exists a data
sparsity problem. How can a system learn to produce a certain word
when the specific form of that word is not present in the training data?

One way to express an inductive bias is by changing the modelling
architecture. For image recognition, one dispenses linear layers for shift-
invariant CNNs [4, 5], and for text classification, one opts for recurrent
architectures instead [6]. An inductive bias for morphological inflection,
however, is trickier to express algorithmically. Ataman, Aziz, and Birch
[7] do so by learning a hierarchical latent-variable model. Beyond the
additional computational cost relative to standard NMT architectures,
however, this route of reasoning also invalidates pre-trained architectures
entirely. With the unprecedented scale of modern deep learning architec-
tures, built with more data, more compute power and more parameters
than any single researcher is likely to possess, repeating training becomes



1 Introduction 2

practically intractable. Ideally, research into morphological awareness
starts from a competent NMT system.

Instead, this thesis proposes a post-training fine-tuning procedure. It
can take any NMT system, through adaptation it improves its capacity
to morphologically inflect. Despite the lack of an explicit inductive
bias, hopefully, an implicit one can be learned to allow for more robust
generalization to new words.

1.1 Outline & Contributions

2. Morphological Tagging and Lemmatization in Context: this chap-
ter starts with an overview of morphology. Some crucial definitions
are given and how these are tackled from a modelling perspective
is outlined. The second section covers the tasks of jointly lemmatiz-
ing and morphologically annotating natural language. This was
needed as a pre-processing step, and given no solutions had been
made available in the desired annotation schema, new variants
were trained. The SIGMORPHON 2019 shared task is described,
with winning systems described in detail. A novel architecture,
DogTag, is proposed. All systems are implemented, and are eval-
uated in a similar style to the shared task, and on a novel OOV
generalization benchmark. While DogTag is only competitive when
considering the overall dataset, it proves better at generalizing to
new word-forms. All findings and code is open-sourced to allow
others to quickly leverage these systems.

3. Evaluating the Morphological Awareness of NMT Systems: this
chapter proposes a method for directly testing the morphological
awareness or competence of existing NMT systems. The proposed
testing methodology is again novel, and clearly addresses errors
or shortcomings of related methods presented in the literature.
Already looking at the next chapter, the most common confused
generations are found for visual analysis (e.g. singular words are
produced where plurals are needed). An extensive regressions
analysis is presented in the accompanying appendix, showing
certain morphological features are clear determinants of poor
generations.

4. Adapting NMT Systems for Morphological Awareness: this final
chapter deals with teaching pre-trained NMT systems an induc-
tive bias towards morphological inflection. This is done via a
meta-learning framework, although the emphasis lies on regular
generation of translations, not few-shot learning (i.e. the zero-shot
capacity is tested). The results of the preceding chapters are in-
corporated to define a novel sampling scheme ‘morphological
cross-transfer’, that disentangles for the model lemmas and affixes.
While the models trained in this manner show some improvement,
by the standards set out in Chapter 2, it comes at the cost of gen-
eral translation competence. Some avenues for future research are
suggested
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This first chapter deals with morphology as a concept, and automated
analysis in natural language. The first section provides a whirlwind tour
of the field, intending to provide the reader with a working notion of core
definitions used throughout the remaining text. Special effort is made
in elaborating differences between languages. The second section deals
solely with re-implementing contextual joint lemmatizers and morpho-
logical taggers. These were deemed necessary for later efforts, but existing
solutions proved inadequate. A novel architecture proves competitive
with the state-of-the-art, generalizing well to out-of-vocabulary terms.
No reference to machine translation or multilingual modelling is made
yet, but these mono-lingual systems play a pivotal role in the coming
chapters.

2.1 Morphology

Linguistically speaking, the field of morphology is the study of the
smallest, most atomic units of language that carry meaning. The units,
called morphemes, are present within all words, and largely define their
internal structure. More specifically, the field seeks to understand these
constituents of a word, their function, and whether their presence is due
to grammatical or semantic necessity. Haspelmath and Sims [8] provide
two succinct definitions: morphology is either the study of i) systematic
covariation in the form and meaning of words, or, ii) the combination
of morphemes to yield words. Not unexpectedly then, morphology is
considered an important aspect of linguistics:

Morphology is the conceptual centre of linguistics. This is
not because it is the dominant sub-discipline, but because
morphology is the study of word structure, and words are
at the interface between phonology, syntax and semantics.
Spencer and Zwicky [9]

More intuitive perhaps than the notion of a morpheme is that of a word.
For simplicity’s sake, a word or token will be defined as some contiguous
sequence of characters with some natural boundary pre- and succeeding.
As alluded to earlier, a word is in fact already a compound structure. Two
distinct variants of a word exist:

▶ when considering the abstract meaning of a word, one is consider-
ing the lexeme. Many words can belong to this lexeme, but are all
represented by the same lemma. Lemmas are the items by which a
dictionary is indexed, capturing some core concept, condensing a
whole set of words into one

▶ when considering the concrete form of a word or token, one is
considering the word-form, surface form or orthographic form
of said word. The word-form augments the bare meaning of the
lemma with morphemes that carry grammatical function, or alter
the word’s meaning
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Figure 2.1: The morphological typology landscape and commonly identified subsets within.

[10]: Zhuang (300BCE), Zhuangzi

1: Which in turn come in various
flavours.

▶ If preceding the root, it is a prefix
▶ When succeeding the root, it is a

suffix
▶ In the rare case it is placed within

the root, it is an infix
▶ The opposite of an infix, requir-

ing both a pre- and suffix, is the
circumfix

In short, we read word-forms, and think in terms of lemmas. Consider,
for example, the sentence,

A snare is for catching rabbits; once you have caught the
rabbit, forget about the snare.
Words are for catching ideas; once you have caught the idea,
forget about the words. Zhuang [10]

In the first line, the words ‘catching’ and ‘caught’ are two word-forms
referring to the same meaning, one referring to a general act, the other de-
scribing the successful completion of that act. Both are concrete instances
of the lemma ‘catch’. In the second line, ‘caught’ refers to an entirely
different concept (i.e. understanding), and thus a different lexeme, but
matches in word-form and maps to the same lemma.

Beyond sage advice, the example illustrates the effect of morphemes.
In short, morphemes come in two forms: roots and affixes1. The root
carries the meaning, the affixes change it to fit in the sentence. If the
change is lexically motivated, i.e. to create a new vocabulary item, the
word-formation process is one of derivation. If instead it is syntactically
motivated, the affix is deemed functional, and it becomes an inflection.
For example, to take the lemma ‘catch’ to ‘caught’, ‘ught’ is suffixed to the
root ‘ca’, an inflection required due to a change in tense. All word-forms
together, belonging to the same lemma constitute that lemma’s paradigm
(e.g. ‘catch’ includes in its paradigm the tense inflected forms ‘catch’,
‘caught’, ‘caught’).

Rules of word-formation, which come naturally to native-speakers, follow
(for the most part) strict patterns. Such patterns are typically linked to a
word’s part-of-speech (PoS). The number and specific instances of those
PoS differ somewhat between annotation schemas, but standard entries
include nouns, verbs, etc. One important dichotomy between PoS are the
open and closed classes, tightly linked to the notion of derivation and
inflection, respectively. The former deals primarily with lexical items,
and is limited only to our ability to invent new meanings. The latter, in
contrast, contains words necessary to make grammatical sentences, with
practically no information carried in isolation (for example, conjunctions
like ‘and’ or ‘but’ or ‘or’).
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2: Low synthesis are sometimes catego-
rized as ‘isolating’

2.1.1 Morphological Typology

While understandably important to study for each language separately,
differences across languages in their approach to morphology provide a
useful framework for classifying languages and specifying their relation-
ship. This subfield is called morphological typology.

Historically, two useful metrics exist for classifying where a language
falls in the morphological typology landscape [11]. The first is the degree
of synthesis, defined as the number of morphemes per word. Lan-
guages with low synthesis are deemed ‘analytic’, whereas those with
relatively high degree, ‘synthetic’. For an example clearly showing the
difference, compare Haspelmath and Sims [8]’s glossed translations. First
an extremely analytic2 language, Vietnamese, to a moderately analytic
language like English,

Vietnamese Hai d-ú.a bo? nhau là ta.i gia-d-ình thàng chông.
Morphemes two individual leave each other be because of family guy husband
English They divorced because of his family

Next, an extremely synthetic3

3: High synthesis outliers are sometimes
categorized as ‘poly-synthetic’

language like West Greenladic,

West-Greenlandic Paasi-nngil-luinnar-para ilaa-juma-sutit.
Morphemes understand-not-completely-1SG.SBJ.3SG.OBJ.IND come-want-2SG.PTCP
English I didn‘t understand at all that you wanted me to come.

In essence, the degree of synthesis dictates the allowed complexity of
individual words in a sentence. For highly analytical languages, each word
is typically composed of a single morpheme, and has a single semantic
or syntactical function. In comparison, highly synthetic languages have
words consisting of many morphemes, whose combination might allow
for many distinct functions. Most major European languages tend to be
synthetic, with modern English being one of the few exceptions.

The second metric of relevance is the segmentability of morphemes, called
the degree of agglutination. Low levels of agglutination indicate that
morphemes combine in often irregular patterns, and is typical of ‘fusional’
languages. Juxtaposed are the ‘agglutinative’ languages, having high
levels of agglutination, and highly patterned composition. A prototypical
example of an agglutinative language is the concatenative morphology of
Turkish. Taken from Comrie [11], the following table provides the noun
conjugation of the word ‘walk‘ (‘adam‘), with hyphens added for effect.
Note the highly predictable shift from singular to plural forms, across
each casing form. Contrast this to a fusional language like Russian. This

Case/Number Singular Plural

Nominative adam adam-lar
Accusative adam-ı adam-lar-ı
Genitive adam-ın adam-lar-ın
Dative adam-a adam-lar-a
Locative adam-da adam-lar-da
Ablative adam-dan adam-lar-dan

table [11] instead provides a similar paradigm for the Russian nouns
‘table‘ (‘stol‘), and ‘lime tree‘ (‘lipa‘). Two words are included to show the
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4: Special Interest Group on Computa-
tional Morphology and Phonology
[12]: Sylak-Glassman (2016), ‘The com-
position and use of the universal mor-
phological feature schema (unimorph
schema)’

[12]: Sylak-Glassman (2016), ‘The com-
position and use of the universal mor-
phological feature schema (unimorph
schema)’

effect of a third variable of complexity interacting with the previous two,
namely noun declension types. Note how the casing affixes across the
singular and plural forms are often conflated, which in turn also vary
across the declension type (I or II).

Declension Type I II

Case/Number Singular Plural Singular Plural

Nominative stol stol-y lip-a lip-y
Accusative stol stol-y lip-u lip-y
Genitive stol-a stol-ov lip-y lip
Dative stol-u stol-am lip-e lip-am
Locative stol-om stol-ami lip-oj lip-ami
Ablative stol-e stol-ax lip-e lip-ax

Both degrees of synthesis and agglutinivity correlate positively with the
notion of morphological complexity. However, the relationship is concep-
tually not unbounded; the distinction between fusional and agglutinative
languages typically only makes sense between synthetic languages. For
an overview of the morphological landscape, see Figure 2.1. When talking
about morphologically rich languages, one typically refers the demar-
cation between synthetic and analytic languages, particularly towards
poly-synthetic. Again, relative to English, most European languages tend
to more complex in their morphology.

2.1.2 Morphological Annotation

Before discussing modelling approaches to morphology, a significant
initial hurdle to overcome is developing a labelling scheme that is
consistent across languages. At this point, the notion that languages
vary drastically according to their morphological complexity should
be clear. The dimensions along which that complexity is expressed are
morphological features. In this too, there exists a great deal of variation.

To this end, SIGMORPHON4 has developed the Universal Morphological
Feature (UniMorph) schema [12]. Focused entirely on predicting inflected
word-forms, the ultimate goal of the project is multilingual lookup of
any word-form from the combination of lemma and features. Otherwise,
with the lexical item known, one need only choose a single item from its
paradigm to construct a grammatically correct token. This work primarily
uses data annotated with UniMorph 2 [13]. Recently, the fourth version
released, expanding the 23 dimensions to cover 122 million inflections
across 182 languages [14]. The full schema, to which many references will
be made throughout, made be found in Sylak-Glassman [12].

https://sigmorphon.github.io/
https://sigmorphon.github.io/
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Table 2.1: An annotated sentence from
the Dutch LassySmall treebank, showing
the tokenized text and the labels to pre-
dict.

Token Lemma Feats.

In in ADP
1425 1425 NUM
ging gaan V;SG;PST;FIN
hĳ hĳ 3;PRO;NOM
naar naar ADP
Rĳsel Rĳsel SG;PROPN;NEUT
, , PUNCT
waar waar ADV
hĳ hĳ 3;PRO;NOM
hof- - -
schilder schilder N;SG;MASC+FEM
...

...
...

[15]: McCarthy et al. (2019), ‘The SIG-
MORPHON 2019 Shared Task: Morpho-
logical Analysis in Context and Cross-
Lingual Transfer for Inflection’

5: Special Interest Group on Natural Lan-
guage Learning
6: Conference on Computational Natu-
ral Language Learning

2.2 Automated Morphological Tagging &

Lemmatization in Context

In order to produce fluent text, one needs to choose the right words
and as seen earlier, choose the right forms of those words. To do so,
information from a variety of different sources needs to be combined.
Word choice is not merely semantically motivated, but must be altered
to conform to syntax and meaning already present within a sentence.
Context is thus paramount.

From a modelling perspective, one important implication of word-
formation processes are the large output vocabulary sizes. All possible
lemmas are able to take on large paradigms. For morphologically rich
languages, this phenomenon is especially endemic, with infinitely produc-
tive inflection systems. In turn, this leads to specific word forms or even
entire morphological rules not being present in training text of morpho-
logically rich languages, despite size. Generalization to out-of-vocabulary
terms is thus crucial.

Strong automated morphological analysis systems must thus be able to
quickly infer, from context, which features are present for any word, be
able to separate those features in word-form space from the underlying
lexical item, and ideally do so from limited data, all the while retaining
the ability to be infinitely productive.

Running from December 2018 till August 2019, this is precisely the main
focus of the second 2019 CoNLL-SIGMORPHON Shared Task McCarthy
et al. [15]. Where previous renditions and other tasks focus on automated
parsing of paradigms under a variety of constraints, this was the first (and
since only) shared task aimed at incorporating contextual information
for full sentences. Specifically, for all tokens present in a string, models
are expected to produce i) its lemma, ii) the part-of-speech and iii) the
morphological features. Due to the task’s setup, large neural systems
lend themselves especially well.

While unique to SIGMORPHON‘s workshops and shared tasks, the
requirements are similar to the shared tasks presented by SIGNLL5‘s
CoNLL6 conference. Specifically, the labelled corpora necessary for
supervised learning are present in the Universal Dependencies (UD)
project. At the time (version 2.3), the project served as a repository of 129
pre-tokenized treebanks across 79 languages. In turn, the languages are
spread across a wide array of typological families, with a wide variety
of lower resource languages being included. All languages share an
annotation scheme, in theory, and are marked for quality to distinguish
the annotation‘s reliability. Furthermore, all treebanks are provided in
official train/dev/test splits, enabling robust comparison across systems.
Using an automated modification process, the SIGMORPHON shared
task requires predicting 2 out of 11 provided labels for all tokens in the
treebanks, and are evaluated on the test-set performance averaged over
all provided treebanks.

https://www.signll.org/about
https://www.signll.org/about
https://www.conll.org/previous-tasks
https://www.conll.org/previous-tasks
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Has
have

L0|d|-+v+e
0 1 2 3

Figure 2.2: An example of a lemma edit
script.

7: Compared to systems predicting edit
actions, the nearest generative system
(CBNU) pre-trains a tiny-transformer ex-
clusively for lemmatization. This yielded
a lemmatizer only marginally better than
the shared task‘s baseline, and a morpho-
logical tagger significantly worse than
the winning systems.
[16]: Chrupala (2006), ‘Simple data-
driven context-sensitive lemmatization’

[17]: Myers (1986), ‘An O(ND) difference
algorithm and its variations’

[18]: Coglan (2020), Building Git

Figure 2.3: The shortest edit script is
the shortest path across the edit graph
defined on the tokens of both sequences.
Taken from [17].

2.2.1 Lemmatization as Classification

A clear division in the submitted systems comes from viewing the
lemmatization task as either character-based seq2seq generation or token-
level classification. With all systems relying on either a recurrent or
self-attention based architecture, moving towards an encoder-decoder
setup is a natural extension. By limiting the decoder‘s output vocabulary
to a language‘s alphabet, the system is infinitely productive with few
necessary parameters in the final classification head, but suffers in
computational complexity with a greatly increased number of units to
classify. A common alternative that retains the benefits of an encoder-
decoder setup is predicting an edit operation, or set of edit operations,
instead of individual characters. Consecutive edit operations can be
concatenated together, requiring an additional label but yielding fewer
total number of classifications.

Ultimately, whether characters or character edits, seq2seq generations
of lemmas from word-forms requires successful transfer of word-based
context to a character-based decoder. The potentially long character
sequences and reduced representational power of the decoder can lead
to a bottleneck, or at least severely complicates training and prolongs
convergence. A far simpler, but more restrictive, method is predicting
entire edit-scripts (a concatenation of all character-based edit actions
for the entire token). Perhaps an engineering necessity, this recasting of
lemmatization as classification proves an effective simplification, being
utilized by both winning systems7

First proposed as an automated pre-processing step by Chrupala [16],
lemmatization as multi-class classification requires finding for tokens
in the train set a minimal or shortest edit script between the lemma
and word-form. This script consists of a number of specific operations,
yielding a deterministic mapping from a token‘s word-form to its lemma.
Actions, defined at the character level, are typically restricted to skipping
("*"), deletion ("-") or insertion ("+?"), with the last action requiring a
specific form for all possible insertion symbols. From the two sequences,
and specifically these allowed operations, the classic Myers difference
algorithm may be applied [17], finding the minimal edit script by search-
ing the edit graph for the shortest path solution, finding application in
(for example) Git‘s diff function [18].

Going from a shortest edit script between two strings to a lemma edit
script between a word-form and lemma representation of the same string,
requires a few additional steps. First, the longest common sub-string is
found, is deemed the stem, and removed from further consideration. All
text preceding the stem is considered a prefix, and all text succeeding
is a suffix. For both affixes, the case insensitive shortest edit script is
found with the operations detailed above. Finally, for the entire string,
the occurrences of capitalized characters are noted, with sequences
being compressed to their first character. The concatenation of all three
components (casing, prefixes, affixes) is the lemma edit script. As a pre-
processing step, this is performed for all tokens present in the dataset,
enumerated and converted to a one-hot encoded multiclass label vector.
One important special case is when no common sub-string is found.
They are considered irregular, and given an edit script that ignores the
provided token altogether.
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Rule Count Examples

L0|d|d 450024 i→i, the→the, like→like
L0|d|− 35460 flights→flight, arrives→arrive, later→late
U0,L1|d|d 27682 President→President, Tuesday→Tuesday
L0|ign_be 11628 am→be, is→be, ‘m→be
L0|d|−− 10252 sixth→six, does→do
U0|d|d 8944 i→I, I→I, AP→AP
L0|d|−−− 6917 returning→return, cheapest→cheap
L0|−−+b|d 3321 Are→be, ‘re→be, are→be
L0|d|−−−+e 3295 making→make, leaving→leave
L0|d|−+v+e 2841 has→have, had→have, HAS→have
U0|ign_I 2745 me→I, Me→I, my→I
L0|d|−−−+y 2039 cities→city, earlier→early, carries→carry
L0|d|−−+e 1932 ninth→nine, his→he, him→he
L0|d|−+o* 1646 grew→grow, knew→know, n‘t→not
L0|d|−−+y 1433 paid→pay, said→say, their→they

Table 2.2: The 15 most common lemma
edit scripts for English treebanks. The
first column gives the script, the second
the frequency of the script and the final
column some examples from the corpus,
as token → lemma.

Figure 2.4: The UDPipe2 architecture pre-
sented graphically. Taken from [19].

[19]: Straka et al. (2019), ‘UDPipe at SIG-
MORPHON 2019: Contextualized em-
beddings, regularization with morpho-
logical categories, corpora merging’
[20]: Straka (2018), ‘UDPipe 2.0 Prototype
at CoNLL 2018 UD Shared Task’

Overall, while not productive, using lemma edit scripts as labels strikes a
nice balance between compressing the lemma space and generalizing to
unseen word-forms. Furthermore, the methodology is language agnostic,
depending only on the tokenizer. The number of tokens corresponding
to a lemma edit script follows a power law, with the vast majority being
captured using a small portion of the most common scripts. The most
frequent edit scripts tend to be those where the token is already close to
the lemma, requiring few to no actions. Consequently, the least frequent
edit scripts tend to be for longer words, or ones containing rare character
combinations in the affixes.

2.2.2 Architectures

Presented in this subsection are the setups of the 2 winning systems, and
a novel architecture leveraging a more recent character-based transformer.
All architectures classify a lemma script and a morphological tagset,
jointly, for all tokens in a sentence.

UFAL-Prague‘s UDPipe2

As the name suggests, UDPipe2 [19] is the second iteration of a recurrent
multitask NLP pipeline. In its standard form, it is trained to simultane-
ously part-of-speech tag, lemmatize and parse dependency relationships
between tokens. This setup proved state-of-the-art for a previous CoNLL
shared task [20], and needed few modifications for the SIGMORPHON/-
CoNLL 2019 shared tasks. At it core, it uses a standard NLP setup. Words
are fed through a variety of embeddings, which are passed on to a deep
bidirectional recurrent block, before being classified with task-specific
multilayer perceptrons (MLPs).

The word-level embeddings consist of three forms: pre-trained language-
specific subword aware fastText embeddings [21, 22]; contextualized
embeddings from feeding the entire sentence into BERT [23] and recover-
ing tokens from the averaged BPE representation of the final four layers;
and finally, trainable token-specific word embeddings. A fourth type of
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[27]: Straka et al. (2020), ‘UDPipe at
EvaLatin 2020: Contextualized embed-
dings and treebank embeddings’

Figure 2.5: The UDIFY architecture pre-
sented graphically. Taken from [29].

[29]: Kondratyuk (2019), ‘Cross-lingual
lemmatization and morphology tagging
with two-stage multilingual BERT fine-
tuning’
[30]: Kondratyuk et al. (2019), ‘75 lan-
guages, 1 model: Parsing universal de-
pendencies universally’
[31]: Tenney et al. (2019), ‘BERT rediscov-
ers the classical NLP pipeline’

‘word embeddings’ are provided in the form of a trainable char2word
module [24]; tokens are fed as characters into a bidirectional GRU [25],
with directions being concatenated and projected down before sum-
pooling over the time dimension. In turn, the recurrent block consists of
a 3 layer bidirectional LSTM [6], with skip-connections between the layers
[26]. The final block consists of 2 layer MLPs, again with skip-connections,
each classifying the produced logits for a separate task. The char2word
embeddings are appended to the contextualized token representations
prior to lemmatization, adding another skip-connection. As a method
of regularization, the morphological tags are classified jointly, but also
factored into categories, with the latter loss only being used during
training. Regularization proved crucial for generalizability, with dropout
being applied throughout and label smoothing when classifying.

UDPipe2 relies heavily on pre-trained neural modules, at a variety of
context levels. These are all simply concatenated before re-contextualizing.
As a result, this architecture has proven useful to a number of NLP tasks,
with more relevant embeddings being quickly slotted in, as evidenced
by Straka and Straková [27], where swapping out BERT for RoBERTa
[28] provided a modest performance bump. Thus, despite having many
parameters, relatively few are trainable for the task at hand, while most
were previously exposed to large amounts of data with more general
objectives. This makes re-training comparatively efficient, and quickly
allows for scaling to larger datasets, at the cost of an increased memory
footprint and inference latency.

Charles-Saarland‘s UDIFY

Kondratyuk presents UDIFY [29, 30] as a system very similar to UDPipe2.
Instead of relying on 4 somewhat similar word-embedders, only BERT
and char2word are kept. Furthermore, BERT is made trainable, with
token embeddings being created by attending over all self-attention
layers, keeping only the first BPE. Where UDPipe2 uses a tightly joined
recurrent block, UDIFY separates these into two smaller LSTMs: one for
morphological tagging and one for lemmatization. Otherwise, differences
are minor at best.

Previous research into transformer-based architectures have already
indicated the highly hierarchical representations built by BERT and the
like; lower layers tend to specialize in classically upstream tasks, whereas
upper layer representations contain more upstream, context-dependent
information [31]. Layer attention, a simple static vector of linear mixing
coefficients, as utilized by UDIFY could lead to automatically detecting
and leveraging these specializations. This effect is then compounded by
passing gradients back to the decoder-only block. While consisting of
relatively many trainable parameters, and sacrificing the latency gains
of self-attention modules by introducing recurrent blocks throughout,
UDIFY remains fully language agnostic, with the individual components
all being shown to scale to multilingual settings. Kondratyuk leverages
this property well, with optimal performance only being achieved when
pre-training on all available languages, before fine-tuning to each treebank
in isolation.
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[32]: Clark et al. (2022), ‘Canine: Pre-
training an efficient tokenization-free en-
coder for language representation’

8: However, given the auto-regressive
modelling of characters, the authors do
show a 50% increased sentence through-
put.

Character
Collator

Feature
ExtractorCANINE

Lemmatizer Tagger

Figure 2.6: The DogTag architecture pre-
sented graphically.

Table 2.3: Differences between UD and
UM annotations. Taken from [33].

Schema Annotation

UD

VERB
MOOD=IND|
NUMBER=SING|
PERSON=3|
TENSE=IMP|
VERBFORM=FIN

UniMorph V;IND;PST;3;SG;IPFV

DogTag

In the years since, transformer architectures have gone from wildly
impressive newcomers to virtually ubiquitous, with improvements be-
ing made along the way. While the hidden states contain some useful
representations for lemmatization and annotation, they remain largely
unaware of morphological features in word-form space, due to com-
monly used sub-word tokenizers. One specific architecture that proves
an exception to this rule is Clark et al.’s CANINE[32]. Using a series of
convolutions for down- and up-sampling, they manage to train a deep
transformer stack on character input and output. Much like BERT, the
first token of the transformer stack contains a semantic representation of
the entire sentence, but only the upsampled character representations
are used for the masked language modelling objective. Via a relatively
simple added module, they produce a model that is entirely tokenizer
free, vocabulary free, almost inherently multilingual and capable of
handling long sequences - all with 30% fewer parameters than sub-word
alternatives8. However, while provably impressive at natural language
understanding tasks, due to the character based MLM objective, the final
layer is by necessity aware of morphological word-formation processes.
Hence, the final layer representations likely contain information pertinent
to tasks like lemmatization and morphological feature prediction.

DogTag follows this line of reasoning: a joint lemmatization and morpho-
logical feature prediction model in the style of UDPipe2 or UDIFY, but
with CANINE as the sole feature extractor. The contextualized character
representations produced by CANINE are collated using multi-head atten-
tion [2] between the character sequence and a learnable query matrix (of
length 1). Beyond the multiple heads (whose number correlated positively
with performance), three separate character collators are trained: two for
directly feeding into lemmatization and morphological feature predic-
tion, and one being fed into a bidirectional, multi-layer residual LSTM for
recontextualization of the token representations. These representations
are then concatenated with the task specific collations. A simple MLP
is trained to classify tokens, with training only regularization coming
from a factored prediction. While initial experiments keep CANINE fixed,
fine-tuning the feature extractor proved beneficial, although unstable at
times.

2.2.3 Methods

Data

Since the 2019 CoNLL-SIGMORPHON Shared Task, the UD treebanks
have seen numerous revisions and updates, both in languages used and
novel. Specifically, the used version stems from 2.3, with version 2.9 and
2.10 being made available in November 2021 and May 2022 respectively.
One particularly relevant change are differing train/test splits, making
direct comparisons practically impossible. For many treebanks, the
annotations have been brought to align more closely to the UD standard.

To leverage the improved data quality, treebanks from version 2.9 were
used. The UPOS and XPOS, carrying the Part-of-Speech (PoS) and mor-
phological feature tag sets respectively, were converted to Universal
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[33]: McCarthy et al. (2018), ‘Marrying
Universal Dependencies and Universal
Morphology’

[12]: Sylak-Glassman (2016), ‘The com-
position and use of the universal mor-
phological feature schema (unimorph
schema)’

Table 2.4: Chosen languages. Columns
give their typological families, the lan-
guage name and their position on
the morphological spectrum (Analytic
(Ana.), Synthetic (Syn.), Fusional (Fus.)
and Agglutinative (Agg.).

Fam. Lang. Type

Germanic Dutch Syn.
English Ana.

Romance French Fus.

Slavic Czech Fus.
Russian Fus.

Semitic Arabic Fus.
Turkic Turkish Agg.
Uralic Finnish Agg.

Morphology (UM) [13] tagsets using the same methodology as presented
by McCarthy et al. [15]. The work by McCarthy et al. [33] presents an
automated conversion system that merges PoS with morphological fea-
tures, with language specific combinations being considered, leading to
increased cross-lingual agreement. They further show improved tagging
recall scores compared to simply using the UD features. Lemmas were
left intact, despite systematic differences across tree-banks, and all other
provide features were left in CoNLL-U format. For an extended overview
and explanation of all UniMorph morphological tags, see Sylak-Glassman
[12].

Unlike the shared task, this re-implementation focuses on language-level
training, concatenating available treebanks. One unavoidable source of
systematic errors are differences in annotation methodologies across
different treebanks. While the UD project has prescribed a standard,
ultimately their primary function is collating available treebanks, leaving
manual annotation to separate authors. This leaves mixtures of treebanks,
and in turn entire languages, riddled with noisy labels. Some treebanks
especially do not lend themselves to the task of automated morphological
tagging and lemmatization due to incomplete or unconventional schemas.
Therefore, UD provides quality ratings on their website, loosely based
on the unattached undirected attachment score (UUAS) of the provided
treebanks, with scores close to 0 indicating particularly poor treebanks.
To avoid inclusion of harmful treebanks, a lower quality limit of 0.2 (1 out
of 5 stars) is adhered to. For an overview of available language corpora,
their size and provenance, see Appendix A Table A.1.

Experimenting with all available languages is prohibitively expensive.
Instead, 8 (primarily Indo-European) languages were chosen for a good
mixture of typological families, morphologically complexity. See Table
2.4.

Implementation Differences & Hyperparameters

Given new datasets and a slightly altered end-goal, namely strong
language-specific morphological taggers for a downstream task, the use
of intention behind using pre-defined architectures is not replication
of earlier results, but merely re-implementation of strong baselines.
Furthermore, the cited systems were each developed using NLP-specific
deep learning frameworks, whereas their re-implemented versions are
built using PyTorch [34] only. Some implementation details differ:

▶ Factoring: both UDPipe2 and UDIFY use factored (i.e. the morpho-
logical tags split into separate categories) tag sets as a training-only
form of regularization. With the new datasets, this proved difficult
to re-implement, as some tags were not linked to any category, and
some to multiple. Instead, models were trained to classify present
morphological categories along side all tags.

▶ Sparse Embeddings: support for sparse embeddings remains
lacking in PyTorch, and lead to instabilities. Instead, for embedding
layers, back-propagated gradients were dense with a high β2 value
(0.999) for the Adam optimizer [35] instead.

▶ Additional Regularization: the most prevalent issue in test-set
performance appears to be overfit to the training dataset. While
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9: https://wandb.ai/verhivo/morph_-
tag_lemmatize
10: https://github.com/IvoOVerhoeven/morph_-
tag_lemmatize

11: This practise has come under scrutiny,
with high-resource language families un-
fairly inflating average scores. Averag-
ing over typological family averages can
change the systems’ rankings [37].

both cited architectures use high levels of dropout throughout,
additional regularization techniques proved beneficial. Of note
are masking of entire words and characters when feeding input
sequences to pre-trained embedders

▶ Competition tricks: rather than focusing on building systems ca-
pable of winning on a per-treebank basis, the systems are designed
for performance on a single language. This invalidates some train-
ing strategies employed by the original authors. For example, no
additional per-treebank fine tuning is done, nor is ensembling of
systems, nor language specific hyperparameter searches.

Despite these alterations and augmentations, the hyperparameter sets
used were taken directly from the original papers. Overall, the systems
proved reasonably robust to most choices, and no language-specific
changes were introduced. All results and corresponding hyperparameter
choices may also be found in the Weights & Biases [36] dashboard used
for experiment tracking9. Used code, datasets and model checkpoints
has been documented and open-sourced 10, and should allow for easy
replication.

2.2.4 Results

Overall Test Set Performance

In the style of the shared task, overall test set performance metrics
are provided in Table 2.5. The values are computed using all available
sentences in the official test splits of the used datasets. Again, direct
comparison is not possible, but these do provide comparisons between
systems, and ballpark estimates of how these systems compare to their
original counterparts. For UDPipe2 and UDIFY the self-reported metrics
are provided, averaged over the languages included here. System wide
means are also provided, averaged over all used languages11.

Both UDPipe2 and UDIFY are clearly strong baselines, extending their
impressive competition results to updated datasets and a slightly altered
training procedure. Give UDPipe2’s heavy reliance on pre-trained re-
sources to provide morphologically or context aware word embeddings,
the model requires only a fraction of the training time used by its rivals,
making its performance all the more striking. In the officially published
results, it already achieved the best lemmatization performance, and
was the second best tagger, with notable improvement from corpora
merging. Here, it’s primarily the morphological tagging performance
that stands out. Overall, however, UDIFY appears to be the winner. It sets
the system-wide highest metrics for most languages, and does so with a
respectable margin. Strangely enough, on some of the higher resource
languages its performance falters relative to the rest. As such, its across
language performance is on par with UDPipe2.

Comparatively, DogTag uses only a fraction of the parameters, and in the
DogTag-Fixed variant, trains only a fraction of that fraction. Allowing
the fine-tuning of the CANINE backbone proves important, bringing the
system to close to SoTA. Even without the fine-tuning, DogTag proves a
strong lemmatizer especially. Overall, it seems the best lemmatizer, and

https://wandb.ai/verhivo/morph_tag_lemmatize?workspace=user-verhivo
https://wandb.ai/verhivo/morph_tag_lemmatize?workspace=user-verhivo
https://github.com/IvoOVerhoeven/morph_tag_lemmatize
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Table 2.5: Test set performance of UDPipe2 and DogTag (with pre-trained CANINE weights, and mono-lingual finetuned variants). Metrics
are provided per-language, and mean aggregated per system in the Mean row. All standard deviations were below 5e-3, and are omitted
for brevity’s sake. Numeric columns provide, in order, the 0-1 accuracy of a tokens predicted lemma, the Levenshtein distance between
predicted and ground-truth lemma, the 0-1 set accuracy of tokens predicted morphological feature set, the F1 score for morphological
tags (presented as micro/macro averaged), and finally the throughput in tokens per second, as measured on a NVIDIA GTX 1080Ti GPU,
with batches of 2048 tokens and at most 248 sentences. Bold values indicate best across systems. Arrows ↑↓ indicate whether higher or
lower values are desired, respectively. For UDPipe and UDIFY the self-reported competition results are presented as a rough baseline. For
UDIFY, the multilingual with mono-lingual fine-tuning models are used as baselines. Given the differences in training, and the different
datasets, direct comparison is not recommended. Instead, these present an upper limit to the performance of the replicated models.

Model Language Lemma Acc. ↑ Lev. Dist. ↓ Morph. Set Acc. ↑ Morph. Tag F1 ↑ Throughput ↓

UDPipe2

Arabic 0.93 0.21 0.90 0.96/0.85 2313
Czech 0.98 0.03 0.92 0.98/0.90 2930
Dutch 0.94 0.12 0.95 0.97/0.93 3223
English 0.97 0.05 0.92 0.96/0.90 2977
Finnish 0.82 0.44 0.81 0.92/0.62 2633
French 0.98 0.04 0.92 0.97/0.87 3716
Russian 0.97 0.06 0.92 0.97/0.88 2759
Turkish 0.91 0.19 0.77 0.89/0.58 1828

Mean 0.94 0.14 0.89 0.95/0.82 2797
[19] 0.96 0.11 0.95 0.98/ −

UDIFY
Mono

Arabic 0.94 0.18 0.93 0.96/0.88 2135
Czech 0.99 0.02 0.95 0.98/0.95 2413
Dutch 0.95 0.09 0.96 0.97/0.96 2507
English 0.93 0.12 0.82 0.89/0.82 2445
Finnish 0.88 0.26 0.92 0.96/0.84 2106
French 0.94 0.18 0.93 0.96/0.88 2135
Russian 0.92 0.14 0.77 0.91/0.80 2242
Turkish 0.94 0.13 0.83 0.92/0.74 1371
Mean 0.94 0.14 0.89 0.94/0.86 2169
[29] 0.95 0.11 0.95 0.98/ −

DogTag
Fixed

Arabic 0.85 0.45 0.76 0.90/0.77 1851
Czech 0.93 0.12 0.72 0.90/0.81 2255
Dutch 0.87 0.27 0.79 0.87/0.83 2255
English 0.93 0.12 0.79 0.88/0.81 2361
Finnish 0.67 0.85 0.55 0.77/0.52 1620
French 0.95 0.09 0.84 0.93/0.81 1652
Russian 0.91 0.16 0.73 0.89/0.78 2110
Turkish 0.79 0.46 0.60 0.81/0.53 1714
Mean 0.86 0.32 0.72 0.87/0.73 1977

DogTag
Mono

Arabic 0.93 0.20 0.87 0.94/0.84 1851
Czech 0.98 0.03 0.90 0.97/0.93 2279
Dutch 0.93 0.13 0.92 0.95/0.94 2256
English 0.97 0.06 0.89 0.94/0.87 2282
Finnish 0.85 0.32 0.85 0.94/0.81 1915
French 0.98 0.04 0.92 0.97/0.88 2623
Russian 0.97 0.06 0.88 0.96/0.90 2135
Turkish 0.92 0.18 0.78 0.91/0.72 1714
Mean 0.94 0.13 0.88 0.95/0.86 2132
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12: Interestingly, these also represent the
included agglutinative languages.

13: Rather than reporting a standard
statistic for difference of means, like
Student’s or Welch’s t-test, Cohen’s d

[38] is used; the difference in means in
units of the pooled group standard devi-
ation. Unlike the aforementioned statis-
tics, Cohen’s d provides sensible values
when variances between groups differ
and populations are of unequal sizes.
This is the case for comparing seen word-
forms/lemmas to unseen ones. The for-
mer is far more frequent than the latter.
Cohen’s d has as sampling distribution
a standard normal distribution, and the
variance is approximately known [39].
14: While hypothesis testing is hinted at,
please note that p here is not used as a
formal hypothesis test. Instead, it merely
provides an indication that the observed
effect is actually present. In other words,
it indicates the probability that the same
test repeated with a new set split would
yield dDogTag − dUDIFY = 0

while it lags on morph tag set accuracy, the F1 scores stand out. This
might indicate slightly better capacity at handling rare features.

There exist notable differences within languages, but across systems.
The three smallest corpora, Arabic, Finnish and Turkish12, yield lower
lemmatization scores, and substantially lower morphological tagging
results. For Finnish and Turkish especially, the macro averaged F1 scores
lag behind (behind the ‘/’). Again, low values on especially this metric
are symptomatic of not being able to handle infrequent label instances.

More disappointing was the lack of improvement from the 2 stage
multi-lingual pre-training followed by mono-lingual fine-tuning setup,
as prescribed by UDIFY. Results may be found in Appendix A Table A.2.
The UDIFY shows definite improvement, approaching the self-reported
global averages. Relative to their monolingual training, however, the
improvement is smaller. It could be that treebank merging already pro-
vides much of the benefit that including other languages from the same
typological family provides. Otherwise, the system might be close to a
feasible upper limit on performance. For DogTag, hardly any improve-
ment was booked overall, and the Turkish system even showed decline.
Potential explanations might include a lack of consistency in the language
merged labels, or requiring merging of the dataset beyond the typological
family.

Generalization to Out-of-vocabulary Terms

While the use of hidden test set does emulate the system’s performance
on a natural language corpus of the same language, it does not directly
test the generalizability of the systems to new word-forms and new
lemmas. Especially for morphologically complex languages, this ability
is a necessity for downstream use. Thus, moving beyond the analysis
provided by the task organizers, the generalizability of the UDIFY and
DogTag are put to the test. Two forms of generalization are tested for, i)
comparing seen word-forms to unseen word-forms of known lemmas,
and ii) comparing seen lemmas to unseen ones. Both test to which degree
the models can leverage provided information beyond their capacity to
memorize word-forms. Such a test ideally checks both the lemmatization
and morphological tagging capacity. The chosen metrics, one for each
task, are the Levenshtein distance and the intersection over union (IoU)
of the produced tag set. The latter is a more fine-grained measure of
token-level accuracy than presented in Table 2.5.

Table 2.6 displays the results per-language, averaged. The mean gen-
eralization gap between seen and unseen is provided in terms of the
within group variance via Cohen’s d13, with ideal values being 0 (no
difference between seen and unseen). To test the differences systems, p is
provided, indicating the one-sided probability that the d value for UDIFY
and DogTag are statistically significant14.

The Levenshtein distance between predicted and ground-truth lemmas
shows a counter-intuitive pattern when comparing generalization to
new word-forms and to new lemmas. In the former situation, only
the particular inflection is unfamiliar. One would expect a successful
lemmatizer to be able to disentangle the affix from a lemma, with affixes
generally being shared across paradigms. However, when comparing
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Table 2.6: Testing the generalization capacity of the best systems from Table 2.5. Given are, per-language and per-system, the average
metric value for tokens that fall in the seen and unseen categories. Arrows ↑↓ indicate whether higher or lower values are desired,
respectively, and a ⋄ indicates 0 is ideal. The difference between these is given in units of the pooled standard deviation, a statistic
known as Cohen’s d. The p value provides the probability that the difference dDogTag − dUDIFY being positive is an artefact of the variance
inherent to each values, with * indicating p < 5e − 2, a standard hypothesis testing acceptance rate.

Lev. Distance ↓ Morph. IoU ↑
UDIFY DogTag

p
UDIFY DogTag

p
Lang. Seen Unseen d⋄ Seen Unseen d⋄ Seen Unseen d⋄ Seen Unseen d⋄

W
o
r
d

-
f
o
r
m

Arabic 0.10 1.51 −2.01 0.11 1.74 −2.17 1.000 0.97 0.90 0.44 0.95 0.81 0.70 1.000
Czech 0.01 0.13 −0.56 0.02 0.16 −0.54 0.099 0.98 0.94 0.43 0.96 0.91 0.41 0.090
Dutch 0.04 0.58 −1.37 0.06 0.65 −1.18 0.001* 0.98 0.90 0.55 0.96 0.79 0.80 1.000
English 0.09 0.99 −1.81 0.05 0.51 −1.13 0.000* 0.88 0.50 1.27 0.93 0.76 0.71 0.000*
Finnish 0.06 0.69 −0.91 0.09 0.77 −0.85 0.021* 0.97 0.89 0.43 0.94 0.84 0.43 0.466
French 0.03 0.29 −0.84 0.04 0.35 −0.92 0.914 0.97 0.92 0.38 0.96 0.88 0.47 0.946
Russian 0.10 0.61 −0.85 0.05 0.29 −0.56 0.000* 0.90 0.77 0.54 0.95 0.91 0.22 0.000*
Turkish 0.09 0.39 −0.51 0.13 0.56 −0.61 1.000 0.91 0.82 0.32 0.88 0.79 0.31 0.299

Mean 0.06 0.65 −1.11 0.07 0.63 −1.00 - 0.95 0.83 0.55 0.94 0.84 0.50 -

L
e
m

m
a

Arabic 0.14 1.23 −1.34 0.17 1.34 −1.37 0.686 0.96 0.75 1.23 0.94 0.70 1.15 0.050*
Czech 0.01 0.15 −0.61 0.03 0.17 −0.53 0.000* 0.98 0.90 0.79 0.96 0.85 0.76 0.099
Dutch 0.05 0.57 −0.98 0.08 0.64 −0.89 0.007* 0.98 0.87 0.64 0.95 0.80 0.64 0.562
English 0.10 0.55 −0.79 0.06 0.23 −0.39 0.000* 0.87 0.62 0.81 0.93 0.80 0.50 0.000*
Finnish 0.15 1.11 −1.10 0.19 1.08 −0.95 0.000* 0.96 0.91 0.28 0.93 0.86 0.27 0.381
French 0.03 0.16 −0.40 0.04 0.16 −0.35 0.140 0.97 0.84 0.83 0.96 0.82 0.76 0.073
Russian 0.13 0.50 −0.60 0.06 0.28 −0.51 0.000* 0.89 0.69 0.81 0.94 0.81 0.72 0.000*
Turkish 0.11 0.92 −1.30 0.16 1.02 −1.18 0.001* 0.90 0.75 0.56 0.87 0.71 0.55 0.400

Mean 0.09 0.65 −0.89 0.10 0.62 −0.77 - 0.94 0.79 0.74 0.94 0.79 0.67 -

the mean unseen distances, it becomes readily apparent that word-form
generalization yields worse lemmatization performance. Two possible
explanations for this effect are:

1. unseen lemmas are easier to inflect or belong to classes that are. For
example, no training set could contain all possible proper nouns,
but these tend to inflect in a rigid pattern. Phrased otherwise,
new lexical items are likely to come from the open class of words,
indicating words carrying predominantly semantic information,
and tend to be inflected according to learned patterns

2. this is an artefact of limiting the lemma generation to existing lemma
scripts. During training, the model is encouraged to associate a
word-form to a set of classes, and neglect all scripts not immediately
relevant. When presented with a new word-form, the system only
chooses a lemma edit script associated with similar words in the
training data

The only two languages where is not the case, Finnish and Turkish, are
agglutinative. It could be that the prototypical easy segmentability present
in this type of languages is at play, although currently evidence is too weak
to draw any concrete conclusions. When considering the morphological
tagging performance metrics, this relationship is not present, with word-
form generalization scoring higher for some languages, and lower for
others.

Regardless, DogTag’s lemmatization proves to be more robust to OOV
terms, both in the sense of surface-forms of words it has already seen,
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and altogether new lexical items. While its performance lags for most
languages, the difference in performance does not, implying that a
general increase to DogTag’s lemmatization capacity should yield better
performance on unseen word-forms and lemmas also. This effect also
extends to morphological tagging, although to a lesser degree. It is already
clear that UDIFY is the better morphological tagger overall (see Table.
2.5)), and this extends to unseen word-forms and lemmas also. When
comparing generalizbility, DogTag appears to be marginally better for both
forms of generalization. While some differences exist between languages,
these match the performance differences already noted earlier.

Overall, while possessing far fewer parameters, DogTag shows it is capable
of leveraging character-level information in order to generalize as well as
or better than UDIFY.

2.3 Discussion

By this point, a notion of what morphological word-formation processes
are and how these differ across languages, should have been made
clear. More importantly, modelling these linguistic phenomena using
dedicated architectures is covered in detail. These systems are evaluated
both in terms of general test-set performance, but also on their capacity to
lemmatize and annotate novel word-forms and lexical items. All trained
systems, both ones re-implemented and novel, prove their competence
on both these tasks, with strong performance across a wide variety of
languages.

To a lesser extent, this information was already available after the CoN-
LL/SIGMORPHON 2019 shared task, and is verified to function on
general language corpora without the context of a competition. These
already make such systems valuable tools for researchers, as will be
evidenced in the later chapters of this thesis. However, despite little
additional research post-competition, this does not imply this task is
‘solved’. While for many languages scores appear to be approaching an
upper limit on performance, lower-resource or morphologically rich (and
especially both) languages lag behind, considerably. The multilingual
pre-training prescribed by UDIFY could improve this facet especially, and
with large pre-trained transformers forming the modelling backbone
for all considered languages, larger and more varied data might narrow
this gap. As done with DogTag or DogTag in later iterations, replacing
the transformer backbone with newer, more morphologically aware
self-attention architectures, might already yield a better inductive bias.
Especially when using character-based transformers, one could step away
from lemmatization by classification, rephrasing it as another seq2seq
task and yielding systems better at handling open vocabularies. Plenty
of additional future research presents itself. For example, typological
property prediction during multilingual training has shown a beneficial
effect on UDIFY [40]. In summary, while already impressive, new tech-
niques from other NLP domains should be implemented for automated
morphological tagging and lemmatization also, likely bridging the gap
between higher and lower resource languages.
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With strong morphological taggers and lemmatizers, adherent to the
UniMorph schema, now in place, this chapter presents a specific appli-
cation. While never made explicitly aware of a language’s morphology,
neural machine translation systems must nonetheless pick up on word-
formation processes in order to become capable translators. However,
in morphologically rich languages, as discussed earlier, data sparsity
can lead to novel word-forms being required, requiring the model to
leverage its understanding of sub-word units to recognize and generate
said word-forms. The joint taggers and lemmatizers, having had this
information made explicit, can be used to assess to which degree NMT
systems manage this.

Related work is presented in detail, with special attention applied to
their suitability for this task. Then, a novel data collection scheme is
provided, and later applied. The results presented in this chapter and
accompanying appendix, while useful and relevant in and of their own
right, were initially only intended as a stepping stone to building samplers
required for the next chapter. As such, the analysis presented in the main
text is mostly oriented to its downstream task, whereas those presented
in Appendix B lies closer in spirit to prior works.

A basic understanding of neural machine translation systems, especially
modern transformer based architectures (see for example, Bahdanau, Cho,
and Bengio [1] and Vaswani et al. [2]), and commonly used tokenizers is
expected, but not crucial for understanding.

3.1 Related Work

Morphological complexity is generally considered a relevant predictor
of errors, with a variety of tasks becoming more difficult with richer
morphological processes. Despite this, the degree to which this is the case
remains an open question. Wanting to put empirically sound findings, Be-
linkov et al. [41] train diagnostic classifiers, avant la lettre, to infer where
and how strongly morphological features are encoded in a recurrent
architecture. They find that morphology is especially prevalent in lower
levels, positing that these focus on word structure. Generally, morpholog-
ical complexity negatively correlates with translation performance, and
even find that translating into morphologically poor languages improves
the encoder’s capacity to carry source-side morphological features.

Expanding on these findings, Bisazza and Tump [42], use a more fine-
grained feature profile, and note that the encoder only captures mor-
phological information if it is directly relevant (i.e. a good predictor)
for target-side translation. The noted effect is especially prevalent for
grammatical categories, like gender. They label the encoder as ‘lazy’,
prioritizing passing semantic information and markers to the decoder.
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Figure 3.1: An example of contrast sets
the model picked up on. Taken from [43].

[43]: Burlot et al. (2017), ‘Evaluating the
morphological competence of Machine
Translation Systems’

Diagnostic classifiers have since seen tremendous popularity, touted as a
simple tool to pinpoint what information is stored in non-interpretable
model internal representations. With regard to seq2seq generation tasks,
however, they do not answer how well these representations translate to
improved generations. To do so, one needs to also analyse the system’s
output, perturbing input in such a way that the desired property becomes
clear.

A prominent analysis methodology that falls in that class are the contrast
sets introduced by Burlot and Yvon [43], since repeated as part of the
WMT‘18 evaluation suites [44]. Contrast sets are built on the notion
that an NMT system aware of morphology must be able to convert
source-side interventions to similar alterations in the target-side output.
By presenting the system with two sentences, one without and one with
the intervened morphological feature, novel word-forms present in the
intervened sentence indicate whether successful transfer occurred. For
an example, see Fig. 3.1.

By no means is the use of contrast or challenge sets new [45], Burlot
and Yvon include an overview or prior attempts, and clearly outlines
differences. These distinguishing elements of analysis methods include,

1. holistic or analytic, general NMT score or specific to morphology
2. coarse or fine-grained, indicative of general difficulty or capable of

identifying specific issues
3. hand-crafted or natural, does the input come from natural language

or not
4. human judgement or automated, is a human judge required
5. the specific definition of the metric

At the time, they identify their work to be the only that was simultaneously
analytic, fine-grained, and automated, all desirata. Prior work primarily
relies on human judgement, a labour intensive process, or are limited to
small sets of artificial sentence sets. However, they remain dependent on
hand-crafted, artificial data. Likely for this reason, the contrast sets are
limited to small, simple alterations that can be produced quickly. Neither
situation allows for scaling to large-scale, system-wide comparisons.

Keeping the interventions simple in order to produce larger corpora is
considerably more restrictive than it appears on the surface level. While
the automated quality metric checks all altered words in the target-side
output, the morphological assessment essentially becomes one-to-many
relationship. Especially when translating into a morphologically richer
language, the relationship between words in the source-side text to
the target-side text is expected to be many-to-one or many-to-many;
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1: For example, Dutch noun diminutives
can yield valid translations from English
despite remaining anonymous in the
source-side text:

[EN] The horse ate the flower.
[NL] Het paard at de bloem.
[NL] Het paard at het bloempje.

Otherwise, casing in Czech is
formed via noun declension, a relatively
compact representation. To alter the
casing in a language like English,
function words need to be insertion and
word order shuffling is likely required.
[46]: Sennrich (2017), ‘How Grammat-
ical is Character-level Neural Machine
Translation? Assessing MT Quality with
Contrastive Translation Pairs’
2: For example, the verb is made plural
while the subject remains singular:

[Ref] ... dass der Plan verabschiedet
wird

[Cntr] ... dass der Plan verabschiedet
werden

Taken from [46].
[47]: Pratapa et al. (2021), ‘Evaluating
the Morphosyntactic Well-formedness
of Generated Texts’

Figure 3.2: Parsed dependency relations
of a generated sentence (bottom) com-
pared to ground-truth (top). Each sen-
tence would be evaluated separately.
Taken from [47].

sequences of function words in the source-side are typically compressed
into a singular word in the target side. As such, important target-side
morphological processes are invalidated if not present in the source-side
language1. A secondary, related, concern, is whether or not they actually
test for the system’s morphological competence, and not just the transfer
of morphology through the encoder-decoder bottleneck. The former
is an altogether different concept than the latter. Especially with the
perspective provided by Bisazza and Tump [42], the encoder’s encoding
of morphological information is not necessarily related to the decoder’s
output.

Interestingly, a concurrent work already addressed building contrast sets
on target-side texts. Sennrich [46] instead deliberately introduce errors
to ground-truth translations, with an error constrained to introducing
disagreement belonging to a single morphological property2. Where
Burlot and Yvon define their accuracy measure as one of the newly
produced word-forms being marked for the intervened morphological
feature, Sennrich define it as the model assigning higher probability to the
ground-truth sentence than the altered, error-containing sentence. NMT
systems score highly for all categories of introduced errors, although
this is largely determined by the distance agreeing elements. While this
does not require building hand-crafted test-sets, introducing errors to
existing target-side data still does not scale easily, despite being analytic,
fine-grained and otherwise fully automated.

Most recently, Pratapa et al. [47] design an NMT metric that automati-
cally determines how well a sentence conforms grammatically with the
ground-truth output. They achieve this by training a dependency parser,
specifically augmented to be able to handle malformed text (like that
produced by an imperfect translation system). The produced parsing
provides per token a PoS, and across related tokens a dependency rela-
tion. This combination correspond directly to a grammatical rule, with
agreement or presence of morphological markers indicating grammatical
wellformedness. For l‘ambre, they focus exclusively on agreement rules
(e.g. adjectives modifying nouns should match in gender), and case or
verb-form assignment (e.g. a pronoun that is the subject of a verb should
be identifiable as nominative), although the exact form of these rules are
extracted from the annotated treebanks used for the parsers. The corpus
level score is computed as the mean of sentence-level scores.

Within Burlot and Yvon’s framework, Pratapa et al. appear to meet all de-
sirata. Their metric is specific to the grammaticallity of a system’s output,
it easily scales at inference time, and lends itself (with minimal adjust-
ment) to an analysis of relevant rules. A further noteworthy attribute is
independence from a reference translation. However, despite correlating
reasonably well with human judgements of generated translations, when
comparing to other metrics, it struggled identifying grammatically in-
correct sentences from their corrected variants. Recent investigation [48]
into the effect of domain-shift on automated dependency-parsers further
bring into doubt the ability of pre-trained parsers correctly identifying
grammatical rules present in malformed text.
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Het water stroomt over een stuk van 
100 voet breed over de dijk.

src

tgt Water is spilling

over
-ed
-ing
across
on
flowing

{ADV}
{3;FIN;IND;PST;SG;V}
{V;V.MSDR}
{ADV}
{ADP}
{PRS;V;V.PTCP}

reward 0.11

spilling {PRS;V;V.PTCP}

Figure 3.3: The proposed evaluation
method for the morphological compe-
tence on NMT systems. Green gives the
target word and its morphological tag
set. The black words underneath the ‘tgt’
sentence the tokens actually produced,
with the gray bars denoting their relative
frequency. Reward in this instance is the
expected IoU of the produced morph
tags.

3.2 Conditional Generation of Morphologically

Annotated Text

This section describes an analysis scheme that aims to determine the
morphological competence of pre-trained NMT systems, in a similar
fashion to the identified related works presented above. With regards to
the aforementioned framework, it is analytic, as fine-grained as possible,
uses natural data in a natural setting, and is fully automated. An im-
portant distinction is that it is metric agnostic, prescribing a method for
collecting and sampling words from a parallel corpora, providing models
with source- and target-side context just like training. The choice of
metric, instead, determines what specific properties are tested for. Thus,
evaluation occurs in vivo, aligning closely to the training algorithm used.
Furthermore, unlike Pratapa et al., there is a minimal reliance on external
resources, and those used are applied to natural language. Relative to
other methodologies described, testing in this manner is limited only in
the sense that available parallel corpora are limited, and perhaps most
importantly, the analysis is not constrained to source-side morphological
processes.

Consider some NMT system, parameterized by θ, that takes in some
source-side text x, and produces a probability distribution over the
next word, yt, dependent on the previous target-side words, y<t =
(y1, . . . , yt−1),

p(Yt|x, y<t) = ft(x, y<t; θ). (3.1)

To generate the next token, or more typically a sequence of sub-word
units, one simply samples from said distribution and feeds the produced
sub-word unit as additional context (y<t+1 = (y<t, ỹt), ỹt ∼ p(Yt|x, y<t)),
iterating until a complete word is produced. To accommodate common
BPE/SP encoding schemes, in practise one produces units until a word
boundary is detected, typically preprended to the next sub-word unit.

Let R (ỹt, yt|x, y<t) be some function that takes the produced sample and
produces a gain/risk scalar (higher/lower values desired, respectively),
indicating the expected proximity of the generation to ground-truth.
Proximity, here, is a loosely defined concept, depending on the assump-
tions encoded in the underlying evaluation metric µ. If higher values
are desired (e.g. accuracy, IoU) µ is a utility function, making R a gain
function. Vice versa (e.g. Levenshtein distance), µ instead represents
a loss, and R is referred to as a risk function. Regardless, it may be
approximated as,

R (ỹt, yt|x, y<t) = Eỹt∼p(yt|x,y<t) [µ (ỹt, yt)]

≈ 1
K

K∑
k=1

µ
(

ỹ
(k)
t , yt

)
,

ỹ
(k)
t ∼ p(Yt|x, y<t),

(3.2)

with k denoting the k-th sample. From this, the expected risk for a task
Task, defined as some distinct property of the ground-truth target-side
word, yt, such that Ti is the set of all yt which posses property Taski, may
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[49]: Tiedemann et al. (2020), ‘OPUS-MT
— Building open translation services for
the World’

[54]: Tiedemann (2012), ‘Parallel Data,
Tools and Interfaces in OPUS’
3: For a global overview, along with per-
formance indicators, see here.
[55]: Tiedemann (2020), ‘The Tatoeba
Translation Challenge – Realistic Data
Sets for Low Resource and Multilingual
MT’

be computed as,

R(Taski) = Ex,y<t
[R (ỹt, yt|x, y<t) |yt ∈ Ti]

≈ 1
|Ti|

|Ti|∑
n=1

R
(

ỹt, yt|x(n)
)

,(
x(n), y

(n)
<t , y

(n)
t

)
∼ DTaski ,

(3.3)

with superscript n denoting the n-th datapoint in the annotated parallel
corpus D, indexed by Taski. For evaluating the morphological compe-
tence of the word, a natural choice of Task is the word’s morphological
feature set, as described in Chapter 2.

Choices for µ
(

ỹ
(k)
t , yt

)
Using this definition of R, depending on the gain/risk µ used, the
morphological competence of the NMT system fθ can be evaluated, in
the target-side output, at the level of individual words. Some viable
choices, already used in Section 2.2.4:

1. the exact match between ground-truth and predicted word-form
(utility)

2. the Levenshtein distance between ground-truth and predicted
lemma (loss)

3. the intersection-over-union (IoU) between the ground-truth and
predicted morphological tag sets (utility)

The first is directly accessible from the NMT system’s output. The last
two require re-tagging the entire sentence with only the target word, yt,
replaced with the generations ỹt.

3.3 Effect of Morphological Features on

Generating Czech Translations

The model chosen for evaluation come from Helsinki NLP’s Opus-MT
challenge [49]. Built on top of Marian-NMT [50], the models consist of a
six layer encoder-decoder transformer architecture, with Sentence Piece
(SP) [51] encoding as its sub-word tokenizer. All in all, the architecture
most closely resembles BART [52] without layer normalization. By no
means SoTA, the models do offer strong performance for its relatively low
parameter count. The hyper-parameter set follows literature standards,
and are made transparent to end users. Further helping its popularity is
their inclusion in the popular HuggingFace transformers library [53]
make these popular NMT systems for experimentation.

Spearheaded by Tiedemann, the OPUS project makes available a large
number of parallel corpora, including thousands of language pairs across
an equally diverse spread of domains [54]3. Of special note are the
Tatoeba challenge collections [55], making up the training data for the
discussed model. This project aims to improve NMT performance for
low resource languages, evaluating on the held-out Tatoeba corpora.

https://github.com/Helsinki-NLP/Tatoeba-Challenge
https://github.com/Helsinki-NLP/OPUS-MT-train/blob/master/doc/Train.md
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[7]: Ataman et al. (2019), ‘A latent mor-
phology model for open-vocabulary neu-
ral machine translation’

4: The best available at the time

5: Czech nouns, for example, have an
additional animacy dimension applied
when marked for the masculine gender.
When marked as feminine or neuter in-
stead, this is not present. Envisioning this
structure as a tree, the animacy dimen-
sion would be a child of the masculine
gender, itself an instance of the gender
dimension.

To allow for efficient estimation of R(Taski), balancing measurement
error with tractability, a moderately sized subset is extracted. Specifically,
the multi-domain training set of Ataman, Aziz, and Birch [7] is used,
consisting of:

1. Software: Gnome, Tatoeba, KDE4
2. Transcriptions: Open Subtitles, TEDTalks
3. News: GlobalVoices
4. EU: EU bookshop

all taken from OPUS, with versions matching those presented by Ataman,
Aziz, and Birch [7]. No learnable filtering is applied, however, with all
corpora being mixed and then filtering out examples where the source-
side and target-side texts fell outside of the 99th shortest percentile, and
within 256 total tokens. The analysis is limited to Czech, although it is
equally applicable to any of the other languages pairs for which this joint
corpus can be constructed.

All available sentences are annotated with lemmas and morphological tag
sets using the pre-trained UDPipe2 model from Chapter 24. An inverse
index was constructed to allow rapid sampling and accessing of target
words yt and their context. Only one occurrence of (Tags(yt), Lemma(yt)),
is kept per sentence, sampled uniformly from those present. Tag sets
were capped at 1000 instances each, with stratified sampling applied over
the lemmas, such that rare instances remain prevalent in the truncated
dataset. On the other hand, tag sets with fewer than 32 samples were
dropped entirely. In total 1,993 tag sets were recorded, yielding 790k
instances over 930k sentences.

For every (x, y<t, yt) tuple, 24 samples were drawn from p(yt|x, y<t).
Generation was allowed to terminate early, or at most at 5 tokens over the
ground-truth length. To circumvent the noisy output introduced by label
smoothing, top-P or nucleus sampling is used instead [56], truncating
the distribution to the minimal set, i.e. the most probable tokens, to sum
to P . A value of P = 0.9 is used throughout. Total processing time takes
about 51 hours on a single NVIDIA TITAN RTX GPU.

3.3.1 Identifying Problematic Morphological Features

To showcase how these results might lead to a fine-grained signal as to
which morphological features tend to induce errors, a model predicting
expected risk from the gathered morphological features is estimated. Each
word for which Eq. 3.2 has been estimated serves as a single data point,
with the presence of a particular morphological feature (i.e. a dummy
variable) serving as the independent variables, and R (ỹt, yt|x, y<t) as the
independent variable. Emphasising interpretability, a linear regression
model is estimated.

The morphological features used for the UD treebanks are structured
into a hierarchy of non-overlapping categories. The presence of a tag in
one category, or a combination of categories, indicate which other tags
should be present also5. The top level features, common to all tokens,
are the parts-of-speech. All other categories complete the paradigm for
a particular lemma. For an example of how these features combine, see
the dedicated site for Czech UD annotations or UniMorph’s schema [12].

https://universaldependencies.org/cs/
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Table 3.1: Posterior of the dependent variables weights, resulting from a Bayesian linear regression for the IoU of the predicted and
ground-truth morphological tag sets. The part-of-speech is entered as binary dependent variables, along side an global effect intercept.
The model is drawn from an uninformative Beta(1, 1) distribution over each independent variable, whereas the parameter values are
drawn from a Jeffreys-Zellner-Siow prior with an r-scale of 0.354. In total, at most 10k models are sampled using Bayesian adaptive
sampling without replacement, with the presented posterior coefficients being model averaged. These hyperparameters largely reflect
the default values used in JASP.

Category Subcategory Part-of-

Speech

p(incl|data) Mean SD 95 CI LB 95 CI UB

Intercept 1.00 0.268 0.00 0.27 0.27

Parts-of-Speech

Adjective 0.96 0.095 24.73 −0.01 0.16
Participle (Adj) 0.89 −0.064 24.73 −0.17 0.00
Adposition 0.47 0.012 24.73 −0.10 0.08
Adverb 0.86 −0.056 24.73 −0.17 0.01
Determiner 0.96 −0.026 24.73 −0.13 0.04
Noun 0.96 0.107 24.73 0.00 0.17
Numeral 0.96 0.028 24.73 −0.08 0.09
Pronoun 0.96 −0.098 24.73 −0.21 −0.03
Proper Noun 0.96 0.070 24.73 −0.04 0.14
Verb 0.47 0.013 24.73 −0.09 0.08
Participle (Verb) 0.93 −0.047 24.73 −0.15 0.02

Observations 510,778
R2 0.089
p(M (null)|Data) 0.000
p(M (best)|Data) 0.490

6: The output provided is as given by
JASP. While the standard deviations ap-
pear suspect, the confidence intervals
do differ indicating this is likely just a
misprint.

Ideally, the analysis model incorporates this structure, but practically
this proves difficult. As a compromise, interactions between the PoS with
individual dimensions can also be considered. This effectively treats the
PoS as the top layer, and all other dimensions as

The simplest model would be to simply find estimates for each part-of-
speech in isolation,

R (ỹt, yt|x, y<t) = β0 +
∑
PoS

βPoS1(PoS, pos (yt))),

with β denoting the estimated coefficients, pos (wi) the parts-of-speech
dimension taken from the full output of a morphological tagger, and1 the
indicator function (1(·) = 1 ⇐⇒ PoS = pos (yt))). The interpretation
of the βPoSs is simply ‘if a token is marked for PoS, the expected risk
shifts by βPoS relative to the global average (intercept)’. All additional
morphological features are conveniently averaged out.

Table 3.1 presents such a model, with the morphological tag set IoU
as the dependent variable, estimated using JASP [57]6. No attempt at
parsimony is made, although the discussion naturally limits itself to
those for which p(incl|data) > 0.95. The coefficients presented come
from the model averaged posterior. Differences between parts-of-speech
already become apparent. Clear winners appear to be nouns, adjectives
(exclusively those that modify nouns) and proper nouns. Contrasted
to these are the pronouns, with generated words sharing only 17% of
the morph tags of the ground truth word. Pronouns typically replace
nouns and proper nouns in sentence, potentially indicating co-reference
resolution is problematic for the NMT system. Determiners, carrying
the same function as pronouns but for adjectives, also see a negative
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7: As determined by the annotated par-
allel corpus. This does limit the in-
stances somewhat, but given the eval-
uation dataset was present during NMT
pre-training, this ensures the model is
aware of those lemmas in those word-
forms.

coefficient, although in magnitude nowhere close to the pronouns.

Regardless, the analysis is hampered by high standard deviations, with
many of the independent variables including 0 in their confidence inter-
vals. A possible reason is an underspecified model: particular features
contain more information regarding risk/gain propensity than the part-
of-speech alone is able to provide. For example, infinitive verbs should be
simple, typically in lemma form, whereas ones inflected for tense might
be troublesome. To that end, the analysis is expanded, including for
each parts-of-speech, the relevant morphological features. The estimated
effects indicate the degree to which a feature being present in a word,
shifts the expected risk from the average for that word’s part-of-speech.
In essence, this adds the second layer to the regressions,

R (ỹt, yt|x, y<t) = β0+
∑
PoS

1PoS(PoS(yt))

βPoS +
∑
tag

βPoS, tag1(tag ∈ Tags(yt))

 ,

with βPoS, tag being the effect of the PoS being marked for tag. With the
many available dimensions, and the many individual tags within each,
the produced model contains a large number of coefficients. For brevity’s
sake, these are presented in Section B.1. Differences within a dimension
can be seen clearly, for example when considering noun casing. Again,
adjectives and determiners score lowest overall.

3.3.2 Identifying Common Confusion

Using the gathered dataset, this subsection provides another possible
qualitative analysis technique. It is meant to display how expressive
data is, and make clear how such data might be used for building a
task scheduler for morphologically aware training (a use-case critical to
Chapter 4). The intent of this analysis is not to provide rigorous evidence
as to problematic morphological features, but instead to diagnose holis-
tically which generations replace which. Thus, this subsection deviates
somewhat from the prescribed method of Section 3.2, but the changes
are easily made.

Specifically, the only necessary change is recording the generated mor-
phological tag sets instead of a risk/gain function. These are grouped by
the ground truth tagsets, essentially providing information as to which
inflections are generated when presented with a particular morphological
feature set.

First, a joint distribution p(Tags(yt), Tags(ỹt)) between all morpholog-
ical tag sets known to share a lemma7, is estimated on combinations
between the ground truth and predicted morphological feature sets.
This distribution is in terms of tag sets, not individual tags. To convert
to one encoding the confusion probability between individuals tags,
this needs to be converted to a marginal conditional distribution, i.e.
p(taga ∈ Tags(yt)|tagb ∈ Tags(ŷt), tagb ∈ mistakes). This may be read as
the probability that taga is in the tag set of the ground-truth word-form,
given that tagb is mistakenly present in the tag set of the generation.
Otherwise, given the mistake is known to be tagb, what is the probability
it should have been taga. Marginalization is complicated somewhat due
to the definition of ‘mistake’ with respect to set prediction:
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Figure 3.4: The marginal confusion matrices, indicating the error type between the predicted (columns) and ground truth (rows) tags.
Each cell indicates a certain conditional probability. Bright colours indicate high prevalence. Cells are blocked into their respective
category, with the first (top left) being the parts-of-speech. The individual tags are given by the bottom matrix’s column headers, colour
coordinated with their respective category. Vertical text indicates which type of mistake is being considered.
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1. False positive, the system produced a word marked for a tag not
present in the ground truth tagset

p(taga ∈ Tags(yt)|tagb ∈ Tags(ỹt), tagb ̸∈ Tags(yt))

Here, the mistake is attributed uniformly to all true positive tags
taga ∈ Tags(yt)

2. False negative, the system produced a word not marked for a tag
present in the ground truth tagset

p(taga ∈ Tags(yt)|tagb ̸∈ Tags(ỹt), tagb ∈ Tags(yt))

Here, the mistake is attributed uniformly to all predicted positive
tags tagb ∈ Tags(ỹt)

3. Substitution, the system produced a word marked for a tag that
was either a false positive or a false negative. Otherwise, one may
read this as, ‘given what was erroneously produced, I can swap it
with some forgotten tag’. Unlike the previous two, the mistake is
attributed only to other mistakes, invalidating cases where either
no false positive or false negative occurred.

Precisely such marginal confusion matrices are presented in Fig. 3.4.
Obviously, the majority of substitutions occur with the morphological
category. Within the parts-of-speech, nouns and adjectives are commonly
substituted, although adjectives also get swapped with determiners.
Generally, looking now at the false positives, the NMT system appears to
be too keen in producing nouns and adjectives, with conjunctions being
especially neglected in favour of nouns.

With regards to casing, pronouns seem to be infrequently marked for case,
especially when instrumental. Likely, this implies generated pronouns
typically do not agree in case inflection with the nouns they replace.
Interestingly, this pattern does not appear when considering dimensions
like gender & animacy or number, other markers applied to nominal
words.

The number, comparison and polarity dimensions are most often con-
founded, both within the category (see blocks in ‘Substitutions’), and
outside of it (see the row blocks in ‘False Positives’ or ‘False Negatives’).
Determiners should be marked as singular more often, whereas numer-
als are not marked plural often enough. The high confusion between
comparative and relative tags indicates trouble separating relative and su-
perlatives adjectives and adverbs. Specifically, the NMT system produces
more superlatives than relatives, when the latter suffices. Most egregious
of all three, though, is the polarity dimension. Mostly independent of all
other dimensions, words tend to marked positive (i.e. not negative) far
more often than should be. Negation, and/or agreement of negation, is
thus clearly a prevalent issue.

3.4 Discussion

As promised, this chapter covers existing methods for assessing the
morphological competence of neural language models, and designs a
new technique that addresses some existing pitfalls. This then lends itself
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to handy auxiliary analysis methods which can identify morphological
features, in the target language. In the grander scope of this thesis, how-
ever, these are merely secondary results. The main reason for this error
methodology is be able to design a task sampler and an assessment tool
to detect improvement in morphological competence post-adaptation.

One flaw inherent to the proposed methodology is the restriction of
only considering the next generated word. Effectively, this also measures
how well the NMT system adheres to the word-order prescribed by
the target-language. It could very well be that the properly inflected
word-form is generated later on in the sentence. The contrasts set, which
simply look at the difference pre- and post-perturbation, do not suffer
from this. Another issue, applicable when re-tagging the sentence with
the sampled word-forms, is similar to that of l‘ambre. The model is
forced to infer using malformed input, or generally input not present
in its training domain. In this case, the model might defer its decision
to contextual information, which are left unaltered, and could inflate
scores unfairly. The effect on risk estimation is clear, with the estimated
regression models achieving low explained variance (R2), and the finding
that only 36% of instances see the ground-truth lemma produced at all.

How to deal with either of these issues within the proposed framework
is not immediately clear. One could draw inspiration from Burlot and
Yvon [43], and allow the NMT system to generate the entire remaining
sentence and explicitly searching for the ground-truth word-form or
morphological feature set (the latter allowing synonymy). This comes at
a drastically increased expense, however, which could make evaluation
practically intractable. Another possibility would be to use Sennrich’s
[46] method instead, relaxing the expected risk estimation. Instead, the
model is allowed to look at the generated sentences (y<t, ỹt, y>t, and
based on the perplexity it assigns, a re-ranking could be performed.
Taking the example provided in Figure 3.3, while the synonym ‘flowing’
is produced relatively infrequently, when swapped in place of ‘spilling’,
the NMT system might naturally prefer it over the replacement ‘over’.
While this does not assess p(Yt|x, y<t), it does test, to some extent, how
well the system is capable of detecting the correct inflection, regardless
of how well it generates it.
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This final content chapter finally sets out to do what has been hinted at
earlier: teaching pre-trained NMT systems to morphologically inflect. As
stated in the introduction, the trick here, is to retain the architectures and
performance of existing NMT systems. Morphological awareness has been
injected into every phase of the typical NMT system; from pre-processing,
to decoding. The related works section covers a representative sample
of these works, with particular emphasis on a recurring hypothesized
learning mechanism: ‘copy-and-inflect’. The next section takes a step back
and covers a learning paradigm no yet applied, namely gradient-base
meta-learning. While the connection to morphological awareness is not
immediately clear, the following chapter covers an episodic learning
framework that, through only altering the sampling method, should
target the ‘copy-and-inflect’ mechanism directly. This is operationalised
in a series of experiments, with evaluation of the adapted systems
occurring from the viewpoint of a general NMT system, and a dedicated
morphological inflection module. While improvements in both categories
can be seen, these tend to occur separately from each other. This indicates
that despite success in teaching morphological inflection, the devised
learning framework does not necessarily align with improved translation
capacity.

4.1 Related Work

A plethora of approaches inducing morphological awareness in NMT
systems already exist. These approaches have been applied to all facets
of the standard NMT pipeline; from sub-word tokenization methods
using morpheme boundaries to constrained decoding. Broadly, existing
methods fall into three categories, i) informed tokenization, ii) modelling
architectures and iii) data/objective augmentation. The first two cate-
gories necessitate architectural changes, or at least significant re-training
of existing architectures, invalidating them from use for black-box sys-
tems. The last suffers from the same issues, but can often be recast as
supplemental to pre-trained models. As such, the discussion will focus
primarily on Data & Objective Augmentation

4.1.1 Informed Tokenizers & Architectures

With respect to modern seq2seq architectures, the input embeddings
and output classification are typically considered the slowest and most
resource intense operations throughout. Especially for outputting se-
quences with large vocabularies, with morphologically rich languages
being extreme outliers, the parameter count required to perform word-
level classification would dwarf the parameters used for general language
understanding. Using characters instead, limiting output symbols to
small set while retaining infinite productivity, incurs far longer sequences,
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[59]: Mielke et al. (2021), ‘Between words
and characters: A Brief History of Open-
Vocabulary Modeling and Tokenization
in NLP’

Figure 4.1: Hierarchical representations
of characters and words should give the
best of worlds. Taken from [60].

[61]: Ataman et al. (2017), ‘Linguisti-
cally Motivated Vocabulary Reduction
for Neural Machine Translation from
Turkish to English.’
[62]: Ataman et al. (2018), ‘Compositional
Representation of Morphologically-Rich
Input for Neural Machine Translation’
[60]: Ataman et al. (2019), ‘On the Impor-
tance of Word Boundaries in Character-
level Neural Machine Translation’

Figure 4.2: Perturbing the morphological
feature vector yields different inflections
of the same lemma. Taken from [7].

[7]: Ataman et al. (2019), ‘A latent mor-
phology model for open-vocabulary neu-
ral machine translation’

which increase latency, memory consumed and increase modelling diffi-
culty. In order to strike an efficient balance between the two, sub-word
tokenization is a commonly applied pre-processing step.

As mentioned in earlier chapters, SoTA models rely primarily on byte-
piece or the related SentencePiece encodings [51, 58]. These systems
retain productivity, with models theoretically capable of producing rare
word-forms or new word-forms of existing lemmas, while striking a data-
driven balance between character and word-level encoding of language.
They are not, however, morphologically informed.

From Mielke et al.’s [59] review, it becomes clear that sub-word tok-
enization is by no-means a new idea, with a long and varied history.
More importantly, they highlight the difficulty in beating BPE baselines,
with limited results when using unsupervised morphological segmen-
tation methods, and supervised methods showing benefits only for
lower-resource languages with particular word-formation processes.

A successful line of research, bridging both the use of morphologically
informed tokenizers and models with inductive biases for morphological
inflection, is that of Dugyu Ataman and co-authors. Starting in 2017,
Ataman et al. [61] start by training an unsupervised hidden Markov
model variant that balances vocabulary reduction with segmentation.
They present moderate increases to general NMT metrics over using just
BPE based approaches. By 2018, this is followed up by removing the
pre-processing altogether, and determining a character-word trade-off
at the model level. Ataman and Federico [62] circumvent the standard
BPE/word embedding layer, and instead train a character n-gram RNN
with a time-pooling operation to generate from characters, a dynamic
word representation. In effect, this is similar to the char2vec modules
used in Chapter 2. The use of composition again yields moderate gains
in NMT metrics, further improving upon the use of an unsupervised
morphological tokenizer as a pre-processor. Ataman et al. [60] take this
notion of composition one step further, not just encoding language at
the character level prior to contextualizing, but also decoding at the
character level again. This hybridizes character-level NMT. While the
manage to show only small gains in NMT scores, using the contrast sets
[44] described in Chapter 3, they manage to show improved morpho-
logical competence, with the gain being especially prominent for more
morphologically complex languages like Arabic and Turkish.

Research into character-based NMT remains active. With the advent of
self-attention based architectures, whose performance scales quadrat-
ically with sequence length, incorporating character level information
while retaining the reduced latency relative to RNNs remains an open
issue. Recent advances, like CANINE, still cannot perform at the level of
NMT quality as standard sub-word tokenizer pre-processed models do,
and contrary to expectations, are not more morphologically competent
[ibovicky-etal-2022-dont].

Furthermore, while such models operate on more morphologically in-
clined sub-word units, there still is no explicit inductive bias for morpho-
logical inflection. Even the hierarchical models still largely contextualize
representations at the word-level, with no guarantee that morpholog-
ical information is considered. Ataman, Aziz, and Birch [7] enforce a
model reminiscent of how humans generate words from morphological
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Figure 4.3: CCG supertag interleaving in
the target-side text. Taken from [67].

[67]: Nadejde et al. (2017), ‘Predicting
target language CCG supertags improves
neural machine translation’
[68]: Tamchyna et al. (2017), ‘Modeling
target-side inflection in neural machine
translation’
[69]: Conforti et al. (2018), ‘Neural mor-
phological tagging of lemma sequences
for machine translation’

information, decomposing the hidden representations into a semantic
(i.e. the lemma) and morphological feature set. By treating this task as
latent variable inference, this process can happen unsupervised, makeing
the model essentially a VAE [63]. The encoder consists of the source-
side NMT encoder and the target-side character to word-level model
described earlier [60]. The latent space is built from a multidimensional
Gaussian semantic and a multidimensional Beta-esque morphological
inflection distribution. The decoder consists of an attention mechanism
over the encoder’s hidden states, and a character-level decoder. Not only
do general NMT metrics see a modest improvement, there is evidence
that it generalizes slightly better to unseen word-forms. When analyzing
samples from the discrete morphological latent space, perturbations
show it determines which affixes are generated, while the lemma is left
unchanged.

4.1.2 Data/Objective Augmentation

Unlike traditional data augmentation techniques, which seek to affordably
extend or regularize the training data with unseen but plausible examples
[64], when proposed for morphologically aware NMT, the main purpose
is providing the model with an additional form of supervision. This
supervision can occur at either the encoder or decoder, but importantly,
always seeks to make explicit the morphological features present in
the target-side text. When applied to the decoder, or target-side, it is
typically the labels that are altered. In essence, the NMT system is forced
to produce representations useful both for seq2seq text generation and
predicting morphological features. Augmentation of the encoder input
is a more recent research avenue, primarily drawing inspiration from
lexically constrained decoding [65, 66]. The expected benefit of these
techniques is the capacity to disentangle a word-form’s lemma from
affixed morphological features.

Target-side Augmentation

While not directly related, the approach tailored by Nadejde et al. [67] has
proven influential. They note the necessity of encoder-decoder models to
learn target-side syntax, and aim to directly improve the decoder’s ability
to do so by interleaving syntax information in the target-side sequence.
The NMT system is now required to output both, iterating a word with a
syntactically motivated tag. Interestingly, performance gains only held
when sharing both the encoder and decoder blocks.

Directly inspired by these experiments, but focused on morphology,
are the works of Tamchyna, Marco, and Fraser [68], Conforti, Huck,
and Fraser [69] and Marco, Huck, and Fraser [70]. Where Nadejde
et al. [67] [67] require the decoder to produce the same information
twice, Tamchyna, Marco, and Fraser [68] instead require the system to
disentangle stem from affix, alternating between producing the lemma
and the morphological feature set. Finally, the combination of the two are
deterministically mapped to their surface form. The authors postulate
that this requires improved generalizability, mapping words to lemmas
and vice versa, a claim repeated by later work. By limiting the decoder’s
textual output to lemmas and morphological features results in a 1.7
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Figure 4.4: Annotated lemma output for
a compound noun in English-German
translation. Taken from [70].

[70]: Marco et al. (2022), ‘Modeling
Target-Side Morphology in Neural Ma-
chine Translation: A Comparison of
Strategies’

Figure 4.5: Various multitask learning ob-
jectives, joined at different levels. Taken
from [71].

[71]: Dalvi et al. (2017), ‘Understanding
and improving morphological learning
in the neural machine translation de-
coder’

[72]: Dinu et al. (2019), ‘Training Neural
Machine Translation to Apply Terminol-
ogy Constraints’

[73]: Exel et al. (2020), ‘Terminology-
Constrained Neural Machine Translation
at SAP’
[74]: Bergmanis et al. (2021), ‘Facilitat-
ing terminology translation with target
lemma annotations’

point BLEU English-Czech gain. In a follow-up paper, Conforti, Huck, and
Fraser [69] takes the two-step NMT approach to an extreme, requiring of
the decoder only lemmas as output, and using a secondary neural model
to predict the eventual word forms. While the NMT system produced
coherent text, and the correct lemma slightly might often, the word forms
tended to confuse morphological features more often; decoupling lexical
choice from word formation entirely, leads to poorer NMT systems for
morphologically rich languages.

Recently, Marco, Huck, and Fraser [70] compare and contrast a variety of
methods in a similar vein, demarcating methods as knowledge poor (little
linguistic information is provided to the NMT system) or knowledge rich
(much formal linguistic information is provided). The former category
includes linguistically motivated segmentation tokenizers, whereas the
latter includes Tamchyna, Marco, and Fraser’s two-step lemma + mor-
phological tag set approach. Focusing on English to German, they show
knowledge rich approaches consistently outperform both baselines and
knowledge-poor approaches on small to medium-sized datasets. This
effect was most prominent when considering out-of-domain test corpora
and unseen word-forms.

Dalvi et al. [71] independently experiment with variations to interleaving,
defining successively looser joining of the objectives on top of the final
hidden representation layer. Specifically, considered are i) right-side
appending of the morphological feature set sequence, ii) generating
either word-form or feature set sequences through the same decoder,
essentially treating each as a separate target-side language, and finally
iii) multitask learning, with separate classification heads on top of the
decoder body working in parallel. Likely due to taxing the long-range
dependencies of the recurrent architectures, only the latter two techniques
proved successful. When tuning a loss balancing parameter, especially
multitask learning yielded significant performance gains across a variety
of language directions.

4.1.3 Source-side Augmentation

Term injection techniques, when presented as a training regimen, require
of the NMT system some word form to be present in the target-side
generation [72]. This can be achieved by appending the target-side
constraint (as a word form) to the source-side text, an annotation scheme
dubbed Exact Term Annotation (ETA). At inference time, the surface
forms of the lexical constraints must therefore already be known.

Beyond whether this assumption is feasible, for successful constrained
decoding, the decoder merely has to copy the target side word form.
Hence, models trained with term-injection in mind will likely prove
incapable of generalizing to all surface-forms of a lemma’s paradigm.
For morphologically rich languages, with their trademark complex yet
sparsely evidenced word-formation processes, this presents a significant
problem.

Both Exel et al. [73] and Bergmanis and Pinnis [74] instead argue for
softer constraints; the NMT system must remain free to infer the present
linguistic phenomena and its impact on the surface form of the injected
lexical item. In order to achieve this, they inject into the source-side text
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[75]: Jon et al. (2021), ‘End-to-End Lexi-
cally Constrained Machine Translation
for Morphologically Rich Languages’

Figure 4.6: From TLA to ETA via a sec-
ondary rule-based module.

[76]: Xu et al. (2021), ‘Rule-based Mor-
phological Inflection Improves Neural
Terminology Translation’

the lemmas of the requested word, dubbed Target Lemma Annotation
(TLA). The model is thus trained to copy-and-inflect the injected constraint
into the target-side text. Effectively, both encoder and decoder are taught
to disentangle a lemma from its surface form.

Initially presented by Exel et al. [73], Bergmanis and Pinnis [74] apply
this setup to lemmas far removed (in terms of Levenshtein distance) from
their word forms, and rigorously test it by including morphologically rich
target-side languages to translate into. Compared to ETA, they achieve
higher BLEU scores (0.3-7.5 points gain), despite meeting the constraint
less often. The largest BLEU gains were for the more morphologically
complex languages. Perhaps more impressively is the reported improve-
ment in the quality of the constrained word-form. Not only does lemma
injection produce the correct lemma more often, the NMT system is
significantly better at inflecting it properly compared to used baselines.
Furthermore, of word forms produced not present in the training vocab-
ulary, 62.5% were correctly inflected. They conclude that the model’s
ability to morphologically inflect is productive.

Extending the above presented methodology to Czech, Jon et al. [75]
show that for such a morphologically complex language, TLA or the
copy-and-inflect mechanism is crucial for properly inflected target-side
constraints. They train using words lemmatized via UDPipe2, and note
that pre-trained transformers can be effectively fine-tuned for term
injection.

All presented TLA systems show reduced constraint coverage; the NMT
system is less likely to produce the desired word form, regardless of
morphological features. Xu and Carpuat [76] attempt to counteract
this by training or defining a secondary module that inflects target-
side lemmas using source-side text as conditioning information. The
produced word-form can then be incorporated as a constraint as ETA.
Once again, incorporation of morphologically motivated constraints
improved the model’s accuracy when inflecting. In fact, when comparing
to other terminology constraint methods, while the lemma is often
correctly incorporated in the target-side sentence, when inflection is
required, the surface form typically is not. Compared to TLA, using
a separate inflection module allows the NMT model to significantly
boost term-accuracy when confronted with rare or unseen word-forms,
better handling sparsity inherent to morphologically complex languages.
Otherwise, little difference was found when training with copy-and-inflect
in mind.

4.2 Gradient-based Meta-learning

This section introduces the motivation and notation common to gradient-
based meta-learning (GBML) frameworks. The differences relative to a
standard machine learning setup are highlighted. It should be noted that
the use of GBML here differs from those typically found in the literature,
namely inductive bias learning (or, to frame it in terms of few-shot
learning, zero-shot). An overview of why certain GBML techniques can
and cannot achieve this, is briefly discussed here, and in far more detail
in Section C.1.2.
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[77]: Finn et al. (2017), ‘Model-Agnostic
Meta-Learning for Fast Adaptation of
Deep Networks’

Model-agnostic meta-learning (MAML), as introduced by Finn, Abbeel,
and Levine [77], has proven to be a seminal learning paradigm. Using
bi-level optimization, strong initialization and fast adaption to a wide
array of tasks can be directly learned simultaneously, irrespective of the
specific architecture. In the previous sentence, reference is made to two
crucial properties of meta-learning. ‘Strong initialization’ is encapsulated
in the meta-model, an initial parameter set shared across tasks, which
determines the performance of the task prior to seeing any data. ‘Fast
adaptation’, instead, is the ability of the learner to rapidly incorporate
new experience, yielding a task-specific parameter set typically denoted
the task- or episode-model.

The notion of tasks is left purposefully vague, although somewhat similar
to common machine learning tasks. In developing GBML systems, tasks
are commonly defined as subsets of all possible classes present in the
dataset. A motivating example used by Finn, Abbeel, and Levine was
defining tasks as regressing data from differing, but related, sinusoidal
functions. In NMT systems, a common task definition are different
languages [78, 79], leveraging high-resource languages to improve low-
resource language translation.

The overall learning objective can be succinctly captured as,

min
θ(meta)

E [L (fθ(episode) (DQ) ; DS)] . (4.1)

In effect, this loss emulates the generalization capacity of the task model,
using the query data (DQ) as an unseen validation set, while the support
set (DS) simulates the training data. While the support and query sets
might share the same underlying dataset, the support and query sets are
assumed to be non-overlapping, such that the query set remains unseen
during adaptation

(
DS ∩ DQ = ∅

)
. The loss is ultimately w.r.t. θ(meta).

Unlike standard machine learning setups, MAML takes an episodic
training scheme. A single iteration (optimizer step), consists of a number
of episodes, i.e. a meta-batch. Each episode considers a single task,
sampled from some task-distribution, Taski ∼ p(Task). In vanilla MAML,
the task-distribution is uniform, although any sampling method could
be employed. At the start of the episode, the meta-model’s weights are
copied as an initialization point for the selected task, θ

(episode)
0 ← θ(meta).

The episode model is then allowed to adapt to the task via K steps of
stochastic gradient descent (SGD):

θ
(episode)
k+1 ← θ

(episode)
k − α∇

θ
(episode)
k

LTaski

(
yS

Taski
, f

θ
(episode)
k

(
xS

Taski

))
. (4.2)

The SGD update step corresponding to Eq. 4.1 then becomes,

θ(meta) ← θ(meta)−β∇θ(meta)

∑
nepisodes

LTaski

(
yQ

Taski
, f

θ
(episode)
K

(
xQ

Taski

))
. (4.3)

In principle, this should encourage θ(meta) to move towards a point from
which adaption to tasks within p(Task) is quickly achieved. This can be
done by either learning a parameter set proximal to optimal for all tasks,
or one which rapidly incorporates novel information without overfitting.
Ideally, of course, both are achieved.
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[81]: Fallah et al. (2019), ‘On the Conver-
gence Theory of Gradient-Based Model-
Agnostic Meta-Learning Algorithms’

[82]: Antoniou et al. (2018), ‘How to train
your MAML’

[83]: Raghu et al. (2020), ‘Rapid Learning
or Feature Reuse? Towards Understand-
ing the Effectiveness of MAML’

While not readily obvious, it is important to notice that Eq. 4.3 incurs
a second-order gradient. Here fθ(episode) is defined as an updated version
of fθ(meta) , such that finding the update direction requires computing a
gradient through the unrolled updates;

∇θ(meta)

(
θ(meta) −

K∑
k=1
∇θ(episode)kLTaski

(
yS

Taski
, f

θ
(episode)
k

(
xS

Taski

)))
.

This can be prohibitively expensive, especially for the larger models
that dominate the current NLP landscape. To circumvent this, first-
order approximations can be made. Simply dropping higher-order terms
leads to first-order MAML (foMAML), a relatively simple approximation
method, which can be even further simplified [80]. Fallah, Mokhtari, and
Ozdaglar [81] show theoretical convergence for MAML, but cannot do
so for foMAML. For most applications, these approximations perform
well enough to warrant ignoring higher-order terms. First-order updates
do, however, work as an effective pre-training technique, and can help
stabilize the performance of MAML trained few-shot classifiers [82]. A
full GBML pseudo-code implementation can be found in Section C.1.1.

While this section has motivated MAML as a gradient-based meta-
learning framework, future sections will make use of the related Almost
No Inner Loop (ANIL) algorithm instead. Introduced by Raghu et al.
[83], this algorithm allows only the classification head to adapt to the
support set, such that the meta-model’s weights prioritize strong cross-
task initialization. Given fθ represents a pre-trained NMT system, and
should stay an NMT system with a slightly altered inductive bias, this was
deemed preferable to weights that quickly adapt; the two objectives are
related, but not necessarily overlapping. This was consistent with early
experiments, with diverging support loss but low query loss being quickly
achieved without ANIL. An extended discussion, with a discussion of
empirical evidence provided by the experiments conducted, can be found
in Section C.1.2.

4.3 Learning Copy-and-Inflect via

Morphological Cross Transfer

This section introduces a novel interpretation of gradient-based meta-
learning approaches, aimed specifically at enforcing an inductive bias
for morphological inflection in pre-trained NMT systems. The discussed
learning algorithm is left intact, with alterations made only to the task
scheduler, p(Task), and the method through which the support and
query sets, (DS,DQ), are drawn.

Recent work in source-side data augmentation has indicated that allowing
models to ‘copy-and-inflect’ lemmas to word-forms in the target-side
language is beneficial in teaching systems about inflectional morphology.
Rather than stochastically appending information on the encoder side,
instead the lemma to word-form process occurs in both the support
and query sets, disjointly. The support and query sets each contain one
morphological feature set. Lemmas present in one morphological feature
set in the support set, are present in the other morphological feature in
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Figure 4.7: Cross-transfer of properties
in an episodic learning framework. Two
entangled properties (here, colour and
shape) are presented in the support set.
For successful generalization to the query
set, the model must learn to disentangle
the properties, and recombine them dur-
ing output.

the query set, and vice versa. Samples sentences are certain to contain
the lemmas, and are split on possessing the first tag set in the support or
query sets. During adaptation, the model is allowed to learn the word
formation process, but for successful generalization, it must be able to
disentangle the lemma from the word-form representation of the word.
In effect, this provides the NMT system with the same information as
the posited ‘copy-and-inflect’ mechanism, except it is now implicit, and
does not require adjusting the encoder to pass on target-side lexical
information.

As suggested earlier, a natural task definition for this scheme is the
combination of a morphological feature set and a lemma edit script. Their
combination specifies a set of related words, possessing the same mor-
phological markers, with the included lemmas containing the intended
lexical meaning. While such information is typically not present in a stan-
dard parallel corpus, the morphological taggers trained in Chapter 2 can
easily annotate arbitrary datasets with high fidelity. From the annotated
sentences, and inverted index can be easily constructed, providing per
task the sentence and token locations of relevant word-forms. The process
is graphically depicted in Fig. 4.7, and a specific example is provided in
Appendix C Figure C.1.

It is important to note that from the model’s perspective, nothing has
changed from its training regime. The only tangible difference is that loss
computation directly assesses the model capacity to distinguish between
lemmata and affixes. However, while meta-learning is commonly applied
specifically to enable few-shot learning capacity, here it is only provided as
a means to an end. Here it is merely an additional fine-tuning phase, and
rather than learning-to-learn from limited examples, it need simply learn
the concept being taught before returning to standard NMT inference.

Not all morphological features are equal, in the eyes of an NMT system,
as Chapter 3 has made clear. From the discussion on MAML and its
derivatives, a task distribution can be easily incorporated into a GBML
framework. Despite this, research into useful distributions is not forth-
coming. Existing work relies primarily on the abstract concept of task
difficulty, typically found via some external tool, but seems divided as to
whether a non-uniform distribution produces improves generalization
[84, 85]. In the general N -way K-shot classification case, generating an
joint distribution over all tasks is practically intractable without limiting
oneself to a distribution of N = 2 [86]. With morphological cross-transfer
in place, however, the number of tasks is naturally set to 2. Furthermore,
precisely such a joint distribution over tasks has already been estimated
for visual analysis in Figure 3.4. These record example commonly con-
fused for one another, with the NMT system producing word-forms
with erroneous morphological markers when presented with a particular
feature in the target-side input.

In combination, an annotated parallel dataset and a distribution over dif-
ficult annotations that need disambiguating, should provide a (hopefully)
powerful tool for teaching pre-trained architectures to disentangle lemma
from affix tokens; teaching an inductive bias towards morphological in-
flection similar to the ‘copy-and-inflect’ mechanism. Algorithm 1 provides
a pseudo-code implementation of morphological cross-transfer.
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Algorithm 1 Cross-transfer
Require: A parallel dataset D indexed by tasks, Taski, consisting of

source-side text x, target-side text y; a joint distribution over tasks
p(Taski, Taskj)

function CrossTransfer(p(Taski, Taskj), D)
Sample Task1, Task2 ∼ p(Taski, Taskj)
Get (a subset of) all common lemmas,

lemmas = {Lemmas(y)|∀y ∈ D (Task1)}∩{Lemmas(y)|∀y ∈ D (Task2)}

Split common lemmas into two sets lemmasA, lemmasB

From D (Task1), place examples with lemmas
lemmasA in DS, and
lemmasB in DQ

From D (Task2), place examples with lemmas
lemmasB in DS, and
lemmasA in DQ

return DS, DQ
end function

[87]: Costa-jussà et al. (2022), ‘No Lan-
guage Left Behind: Scaling Human-
Centered Machine Translation’
1: At time of use 101, but as of 06-2022,
200

2: Particular morphological features in
the gathered dataset likely have similar
contexts, not all of which is relevant. The
model should, obviously, not learn to
correlate these features.

4.3.1 Methods

To test the capacity of cross-transfer to produce an inductive bias for
inflectional morphology, the analysis of Chapter 3 is operationalised.
The same multi-domain parallel corpus used for estimating the expected
risk is used as a training set, with the held-out portion being used as an
in domain test set. Furthermore, the same model, a OPUS-MT trained
Marian encoder-decoder transformer, is used, validating the use of the
estimated mean risk for task sampling. Further evaluation is performed
using Meta AI’s FLORES corpus as an out-of-domain test set [87]; a
set of 2k difficult sentences manually translated to a large number of
languages1.

Much like Chapter 3, the morphologically informed loss is computed by
feeding in the full source-side text, and preceding target-side context,
and requiring the model to predict the target token in its entirety. The full
sentence is not used to avoid destroying the learned data distribution2.
Symbolically, for a single sample with target token yt, this gives,

L(Morph.) (ft (x, y<t; θ) , yt) = −
T∑

τ=1
1 (yt) log (ft (x, y; θ)τ ) . (4.4)

In practise, a left truncated ymax(1,t−max_tokens):<t is fed to the decoder,
whereas x is right truncated.

Early experimentation revealed the necessity of including an NMT loss
to ensure the NMT system retains its capacity to translate full length
texts. The full loss thus becomes,

L = η · L(NMT) (fθ (x, y) , y) + (1− η) · L(Morph.) (fθ (x, y<t) , yt) , (4.5)
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[88]: Antoniou et al. (2018), ‘How to train
your MAML’

where η ∈ [0, 1] is a parameter governing the trade-off between the
conditional masked language modelling loss and the morphologically
informed loss. When applied to meta learning, two distinct formulation
of L(NMT) are considered:

1. NMT as auxiliary task: loss is computed as normal, without
adaptation. Essentially this yields a multitask learning paradigm,
where meta learning with a morphologically informed loss is just
another task, and η controls the importance of the two tasks relative
to on another.

2. NMT as meta-regularizer: loss is computed after adaptation to
randomly sampled sentences from the corpus. The purpose of
including NMT loss is now specifically to regularize the adaptation
step. The morphologically informed and NMT losses are now
identical, save for an informed masking in the former (loss and
adaptation only occurs for token y<t)

During meta-training, due to the memory footprint incurred by the
adaptation step, η controls the probability that an episode takes one of
the above losses, rather than combining them in parallel. The meta-batch
update should, in expectation, approximate Eq. 4.5.

With regards to meta-learning, ANIL [83] was used. The final language-
modelling head, projecting the decoder’s hidden state output to the
target-side vocabulary, was assumed to be the equivalent to the classifier
head used for their few-shot experiments. Given the model was already
pre-trained, and the proximity of the tasks to the overall dataset, only a
single adaptation step was allowed, without first-order approximation.
The inner loop learning rate was left as a learnable parameter, specified
per step and per layer as suggested by Antoniou, Edwards, and Storkey
[88], although in this case that amounts to a single parameter. The outer
loop learning was set to 5e− 6, and the initial inner loop learning was
set to 1e − 3. To stabilise gradients, a meta-batch size of 8 episodes
was chosen, significantly reducing the gradient norm. For cross-transfer
episodes, a maximum of 4 lemmas were samples, each with at most 2
samples.

To enable fair comparison, two baseline methods were trained. The first
consists of a simple fine-tuning phase, without label smoothing and
a linearly decaying learning rate. The second incorporates an explicit
morphological signal, namely via training a secondary classifier that
predicts the annotated morphological features sets, in the style of the
taggers trained in Chapter 2. Layer attention, like presented in UDIFY, is
applied, allowing the morphological classifier to leverage representations
throughout the model. The learning rate was set to 5e − 6, and early
stopping was performed after failing to improve the NMT loss on the
validation set (sampled prior to training from the training set) in three
consecutive checks at 10,000 steps.

In all instances, the models are allowed to train for 1 epoch. In the case
of meta-learning, fewer gradient updates are allowed (but with larger
batch sizes), although the amount of data seen corresponds to that of
1 epoch. No additional validation set was sampled for meta-learning.
Instead, validation was performed by sampling cross-transfer episodes
from the training set, and tracking the loss on the relevant and irrelevant
(context) tokens pre- and post-adaptation.
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Table 4.1: Models evaluated and compared to baselines using popular NMT metrics. The arrows indicate whether larger or smaller
values are desired, and ⋄ indicates a value of 0 is ideal. Bold values provide the best performing system for the test-set considered,
underlined the second-best. Metrics should be compared within the test set.

Test Set Method η BLEU↑ BLEU

Lemma↑ ∆BLEU⋄ ChrF++↑ COMET↑ COMET

MQM↑

A
t
a
m

a
n

M
u

l
t
i
d

o
m

a
i
n

Pretrained 1.00 29.59 32.80 3.21 48.39 0.4471 0.0389

1 step

Finetuned 1.00 31.27 34.68 3.41 50.29 0.4765 0.0392
Multitask 0.75 31.33 34.77 3.44 50.29 0.4759 0.0392

ANIL w/
Cross-Transfer,

& NMT Aux.

0.25 30.10 33.52 3.42 49.04 0.4503 0.0386
0.50 30.34 33.77 3.34 49.45 0.4591 0.0389
0.75 30.82 34.25 3.43 49.81 0.4668 0.0390

2 step

Finetuned 1.00 31.37 34.80 3.43 50.38 0.4810 0.0393

ANIL w/
Cross-Transfer,

& NMT Reg.

0.25 30.90 34.27 3.37 49.96 0.4681 0.0391
0.50 31.04 34.41 3.37 50.05 0.4732 0.0391
0.75 31.18 34.57 3.39 50.19 0.4719 0.0391

F
L

O
R

E
S

Pretrained 1.00 28.82 34.68 5.86 53.90 0.7181 0.0437

1 step

Finetuned 1.00 29.45 34.69 5.24 54.08 0.7385 0.0447
Multitask 0.75 29.53 34.83 5.30 54.14 0.7331 0.0446

ANIL w/
Cross-Transfer,

& NMT Aux.

0.25 29.24 34.93 5.69 53.92 0.7341 0.0446
0.50 29.46 35.03 5.57 54.20 0.7430 0.0448
0.75 29.50 34.92 5.42 54.18 0.7511 0.0449

2 step

Finetuned 1.00 29.52 34.72 5.20 54.17 0.7431 0.0448
ANIL w/

Cross-Transfer,

& NMT Reg.

0.25 28.37 33.49 5.12 53.26 0.7218 0.0444
0.50 28.78 33.95 5.17 53.56 0.7320 0.0446
0.75 29.41 35.27 5.86 54.00 0.7322 0.0446

4: https://wandb.ai/verhivo/nmt_-
adapt_baselines
5: https://wandb.ai/verhivo/nmt_-
adapt_test
6: https://github.com/IvoOVerhoeven/msc_-
thesis

The fine-tuning proved to be more successful than anticipated, consid-
ering both the in- and out-of-domain test sets, indicating the model
was underfit to the training data. Adaptation with cross-transfer was
conducted again, but instead of adapting from the pre-trained model,
adaptation starts from the fine-tuned model, again for 1 epoch’s worth of
data. As a baseline, a fine-tuned model is allowed to train for 2 epochs3

3: Similarly to meta-learning, a multi-
task learning from the fine-tuned model
was attempted. Regardless of learning
rate, this consistently led to divergence
in the NMT loss.

.
Meta-learning with NMT as an auxiliary task proved significantly better
when meta-learning from the pre-trained baseline, but significantly worse
when adapting from the fine-tuned baseline.

Much like the experiments presented in Chapter 2, all hyper-parameter
tracking was conducted using Weights & Biases [36]. These are publicly
available here for the baselines4 and here for the meta-learning adapted
systems5. All used code and datasets will be open-sourced 6, and should
allow for easy replication.

4.3.2 Results

NMT Metrics

Table 4.1 summarises the performance of the systems post-adaptation
as a generic NMT system. Baselines are included for comparison. The
choice for and interpretation of metrics is provided in Section C.2.

https://wandb.ai/verhivo/nmt_adapt_baselines?workspace=user-verhivo
https://wandb.ai/verhivo/nmt_adapt_test?workspace=user-verhivo
https://wandb.ai/verhivo/nmt_adapt_test?workspace=user-verhivo
https://github.com/IvoOVerhoeven/msc_thesis
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With regards to meta-training with morphological cross-transfer, regard-
less of the test-set, lower values of η (i.e. lower priority to regular NMT
training) result in lower scores. This indicates that the NMT and morpho-
logically informed objectives do not necessarily align, with a significant
proportion of regular NMT training required to retain a system capable
of functioning as a translator. Generally, performance lags relative to
fine-tuning or multi-task training, and when adapting from a fine-tuned
model, adaptation has a slightly detrimental effect.

This lag is especially prevalent for the in-domain test set. For the out-
of-domain test set, the NMT metrics capable of utilizing sub-word
information (ChrF++, COMET & COMET - MQM) 1 stage meta-training with
cross-transfer outperforms slightly. The conclusion that models trained
in this regime pick up more general word-formation processes is hasty,
however, with relatively low BLEU score, yet relatively high BLEU - Lemma
scores as well. The indicate the models perform lexical choice better, but
not morphological processing (it chooses the right lemma, but not the
right word-form). In turn, the 2 stage meta-trained models with lower
values of η, exhibiting low ∆BLEU scores, suffer on all other metrics.

Multi-task training achieves higher BLEU scores than simply fine-tuning,
but the difference largely dissipates when considering the other metrics,
or 2 epoch fine-tuning. One potential reason, aside from actually learning
representations conductive to improved morphological understanding,
is that the combined loss provides a limited level of noise, reducing the
speed at which the NMT loss decreases. With early stopping implemented,
this leads to slightly longer training times than simply fine-tuning.

All in all, when it comes to general translation, unsurprisingly, fine-tuning
proves a difficult baseline to overcome. Turning off label smoothing
proved crucial, in both adaptation to the new multi-domain training set,
and the harder out-of-domain test set, indicating the model does learn
generalizable language concepts.

Morphological Metrics

Whether the adapted systems become more aware of inflectional mor-
phology cannot, generally speaking, be answered by using NMT metrics.
Instead, the analysis method introduced in Section 3.2 is repeated. Im-
provement on the training set is assumed, with test sets instead matching
those above. The expected risk per morphological tag set is computed for
each model individually, with differences in the expected risk indicating
improvement (or not).

Figure 4.8 provides such expected risk differences between systems
visually. The text on top provides the mean difference in expected risks
in three ways: i) considering all tasks, ii) weighting tasks by the inverse
measurement variance, and iii) weighting tasks by the task distribution’s
probability. The top row of plots provide for all tasks the performance
using the baseline and adapted system, with the dashed line indicating
no change. Between the training and tests, many morphological tag sets
are not present in both. The lighter the colour and the larger the radius
of each circle, the higher the probability of sampling that task was in the
task distribution. Red dots indicate presence in the test set, but not in the
task distribution (i.e. not present in the training set such that it lends itself
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to morphological cross-transfer). The lower rows provide histograms of
the differences, per class of tasks. The first, red, gives the distribution of
tasks not included in the task distribution. The next four segregate seen
tasks by the probability of being sampled, chunked into quantiles. Again,
brighter colours indicate higher likelihood of being sampled. The final set
of histograms instead provide the differences segregated into quantiles
of baseline performance (the horizontal axis of the top scatter plot). The
lighter the colour, the higher initial scores already were. Figure 4.8 only
shows the performance of two meta-trained systems relative to 1 stage
fine-tuning, and only in terms of morph tag set IoU. Section C.3 provides
additional system comparisons, including fine-tuning to pre-trained
and multi-task to fine-tuning, these provide a baseline comparison for
expected morphological competence improvement. Also provided are
similar figures but considering character driven metrics (e.g. Levenshtein
distance).

Despite showing diminished NMT metric values, two stage meta-training
(η = 0.50) does show definite improvement in the expected morph tag
set IoUs, comparable in size to fine tuning from the pre-trained baseline
system (see Figure C.4). On tasks included in the adaptation phase,
the model shows a 0.021 & 0.05 increase on the ID and OOD test sets,
respectively. The effect of the task distribution is also apparent, with tasks
in the higher likelihood quantiles scoring higher than those in the lower
ones. Unscheduled tasks, instead, seem to be distributed about the null
point. The noted effect is especially prevalent when comparing to Figure
C.4; here there is a small but steady increase, there all distributions and
medians/means align almost perfectly across quantiles. Unfortunately,
likely due to the task distribution being defined in terms of high rates
of confusion, improvement occurs mostly in tasks already achieving
high scores. The 25th percentile tasks are distributed about the null
point much like the unscheduled tasks, and for the OOD test set, this
also extends to 50th percentile. Thus, tasks where the model already
performed well saw the brunt of improvement rather than those where it
performed poorly. The degree to which these changes are caused by the
meta-training can be seen when comparing to lower and higher values
of η, see Figure C.6. When η = 0.25, the effect is more noticeable, even
for the OOD test set, while η = 0.75 leads to distributions similar to
those without morphological cross-transfer training. Thus, η effectively
trades-off general NMT capacity for inflectional capacity.

The same cannot be said for 1 stage meta-learning. Despite competitive
sub-word level NMT scores on the OOD test set, and a slight lag on
the in-domain set, with respect to expected morphological risk, the
models lag considerably. Perhaps more worryingly, the task distribution
seems to have no tangible effect, with improvement or loss matching the
ignored tasks in distribution. It seems, NMT training as an auxiliary task
dominates the morphologically informed training, booking improvement
on the former while showing a detrimental effect in the latter.

It is important to note that the presented effect sizes are small, and while
visible, suffer from high variance. Rigorous claims as to improvement
are, unfortunately, difficult to make.
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Figure 4.8: Figures testing the morphological competence of adapted systems relative to the 1 stage fine-tuned baseline.
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4.4 Discussion

The initially defined task of inducing morphological awareness in pre-
trained NMT systems has finally been addressed. Where existing methods
do so by either altering the data or how the model sees the data, the
methodology presented here manages to avoid all of these, retaining
an NMT system capable of translation. By utilising the risk estimation
technique discussed in Chapter 3, a slight improvement in morpho-
logical competence can be seen, with the improvement increasing as
more emphasis is placed on morphological cross-transfer. Unfortunately,
both general NMT quality and morphological competence do not occur
together. Instead, an increase in the latter comes at a decrease in the
former, whereas an increase in the former sees a global increase in the
latter.

Thus, morphological cross-transfer shows an increase in morphological
competence metrics, both on tasks included in the scheduler and to a
limited extent also on tasks not included. The reduction in NMT quality
evaluation likely means the increased awareness of context yielding
certain morphological features results in neglecting other contexts. One
potential cause is a misspecified task sampling distribution. Given mor-
phological cross-transfer requires word-form switching of lemmas in the
support and query sets, using confusion as the metric guiding the task
sampling seemed natural. Using the risk estimates instead, might lead to
more direct increases of the morphological competence at lower risk of
reducing translation quality. Otherwise, it might be necessary to relax the
requirement of constant lemmas in both support and query sets, instead
only holding the morphological feature set constant. This is more akin to
standard GBML, treating a morphological feature set as an individual
task. This no longer teaches ‘copy-and-inflect’, however, instead just an
association between morphological features and likely word-forms. This
has the added benefit of providing far more data, allowing lemmas
included that inflect in totally different ways (for example, irregular
forms) although how useful this remains to be seen.



Conclusion 5

Presented in this thesis is a new technique for teaching an inductive bias
for morphological inflection, and an extensive analysis of the necessary
ingredients for it. Throughout, each method was placed in the context of
existing literature, and novel contributions were made clear. Potential
issues with the presented methodologies were highlighted, and future
research directions briefly touched upon. While successful to some degree,
there clearly remains much to do before true morphological competence
is achieved.

To call neural language modelling a rapidly developing field is an
egregious understatement. State-of-the-art techniques are published
often, opening up new tasks and new benchmarks, before these too
are quickly overcome. Within NMT, but also generally, scaling existing
techniques seems to be a popular and successful method for improving
translation quality for many languages. A prime example of this is
MetaAI’s ‘No Language Left Behind’ project [89], recently publishing
results of a model capable of scaling to 200 languages. While showing
some architectural innovations, most effort seems to have been spent on
gathering more and better quality data, larger parameter sets and better
evaluation. Despite unseen scores on many languages, a substantial
number of which clearly fall in the low-resource category, there remains
a gap between the morphologically poor and morphologically rich
languages. The presented model counts 12 billion parameters, roughly
100 times more than the models used in Chapters 3 and C. Relative to
other state-of-the-art language models, this is still considered small. For
research into the morphological awareness of neural language models,
thus, designing viable post-hoc techniques thus become more and more
important. Designing specialized architectures for this task, or focusing
on language-specific efforts, will only serve to increase the rift between
academia and industry.

The topics covered in this thesis primarily built on ideas and methods
implemented with smaller-scale (recurrent) architectures. While undeni-
ably important, prior work could afford pre-training with custom built
architectures, or increasing the computational complexity of the training
phase for their task. This work, instead, can be seen to make an attempt
at bringing research closer to the current state of affairs in NMT research.
Building model- and language-agnostic adaptation techniques will likely
become increasingly vital for capturing the wide variety of linguistic
phenomena present in human language. With regards to morphologi-
cal awareness, better automated taggers and lemmatizers, and a better
evaluation method will be necessary components for future methods.
Morphological cross-transfer, is only one such method, and has shown
some indication of achieving what it sets out. Integrating it with standard
NMT training will prove paramount for future success.



Appendix



Morphological Tagging

and Lemmatization in Context A

Table A.1: Language merged UD treebanks, filtered by having at least 1 start of quality. Gives the number of constituent treebanks, the
number of sentences (thousands), the number of tokens (thousand), the length of the set of genres present in the treebanks, and the
average quality in stars.

Language Family Treebanks Sentences (k) Tokens (k) Genres Stars

Afrikaans IE, Germanic 1 2 49 2 3.5
Arabic Afro-Asiatic, Semitic 1 8 242 1 3.0
Armenian IE, Armenian 1 3 52 6 4.0
Belarusian IE, Slavic 1 25 305 7 4.5
Bulgarian IE, Slavic 1 11 156 3 4.0
Catalan IE, Romance 1 17 537 1 4.0
Croatian IE, Slavic 1 9 199 3 4.0
Czech IE, Slavic 4 127 2204 5 4.0
Dutch IE, Germanic 2 21 307 1 2.5
English IE, Germanic 6 38 608 2 3.0
Estonian Uralic, Finnic 2 37 511 4 4.0
Finnish Uralic, Finnic 1 15 202 6 3.5
French IE, Romance 5 25 559 4 3.5
Galician IE, Romance 1 1 23 1 3.5
German IE, Germanic 2 206 3687 3 4.0
Greek IE, Greek 1 3 62 3 3.5
Icelandic IE, Germanic 2 51 1142 4 3.0
Indonesian Austronesian, Malayo-Sumbawan 2 7 148 2 3.5
Irish IE, Celtic 1 5 116 5 2.0
Italian IE, Romance 5 34 737 3 3.5
Japanese Japanese 2 16 344 2 2.0
Latin IE, Latin 1 9 242 2 4.0
Latvian IE, Baltic 1 16 266 5 3.5
Lithuanian IE, Baltic 2 4 75 4 2.5
Norwegian IE, Germanic 2 38 612 3 4.0
Polish IE, Slavic 2 39 478 5 4.0
Portuguese IE, Romance 1 9 211 1 4.0
Romanian IE, Romance 3 40 937 2 4.0
Russian IE, Slavic 3 110 1813 1 4.0
Serbian IE, Slavic 1 4 98 1 4.0
Slovak IE, Slavic 1 11 106 3 3.5
Slovenian IE, Slavic 2 11 170 3 3.5
Spanish IE, Romance 1 18 555 1 4.0
Swedish IE, Germanic 1 5 91 3 3.5
Tamil Dravidian, Southern 1 1 9 1 2.5
Telugu Dravidian, South Central 1 1 6 1 1.0
Turkish Turkic, Southwestern 6 73 640 2 3.5
Welsh IE, Celtic 1 2 41 5 2.5
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Table A.2: Multilingual pre-training with monolingual fine-tuning.

Model Language Lemma Acc. Lev. Dist. Morph. Set Acc. Morph. Tag F1 Throughput

UDIFY
Multi+Mono

Arabic 0.94 0.17 0.93 0.97/0.88 2313
Dutch 0.96 0.08 0.96 0.97/0.97 2507
English 0.97 0.05 0.93 0.96/0.90 2445
Finnish 0.91 0.19 0.93 0.97/0.89 1915
Turkish 0.94 0.13 0.83 0.92/0.73 1407

Mono. Mean 0.93 0.16 0.89 0.94/0.85 2113
Mean 0.94 0.12 0.92 0.96/0.87 2117

DogTag
Multi+Mono

Arabic 0.93 0.20 0.88 0.94/0.84 1851
Finnish 0.87 0.29 0.86 0.94/0.83 2106
Turkish 0.91 0.19 0.78 0.90/0.72 1714

Mono. Mean 0.90 0.23 0.83 0.93/0.79 1827
Mean 0.90 0.23 0.84 0.93/0.80 1890



1: Identifying the word as the subject of
a verb.

2: Identifying the word, typically a per-
son, as being addressed

3: Identifying the word as the instru-
ment by which an action is taken

Evaluating the Morphological

Awareness of NMT Systems B

B.1 Identifying Problematic Morphological

Features, Cont.

The very large Table B.1 provides the model averaged posterior coefficients
of the extended model. The category and subcategory (the morphological
dimension and tag) are provided in the left two columns, with estimates
being divided into relevant parts-of-speech. Hidden are estimates for the
category being omitted entirely, which (given the possible category-PoS
combinations are known a priori) correspond to malformed or words
not recognized by the tagger. Already, far more information is provided,
evidenced by a substantial gain in explained variance (∆R2 = 0.053), and
the best model being 4.90e + 37 times more likely than only considering
parts-of-speech.

The interpretation of the global part-of-speech effects are slightly altered
now. These are partial effects, with much of the explanatory power being
shifted to the feature effects. For example, when considering nouns, βnoun
averages out to 0, implying that nouns cannot be differentiated in the data
from any other part-of-speech, without considering the morphological
features present. To get the expected risk for a feminine pronoun, as
another example, regardless of other morphological features, the effects
of the intercept, the part-of-speech and tag effect must all be summed: in
this case, 0.268− 0.15 + 0.053 = 0.171.

For some morphological categories, a discernible difference exists across
tags. For most forms of casing, the effect is detrimental, with the mag-
nitude of the effect being relatively stable across parts-of-speech. An
exemption to this is the ‘Nominative’ case1, with all estimates being the
highest for that part-of-speech in the casing category (save the adjectives).
In turn, the ‘Vocative’ case2, which is relatively rare and only present for
nouns, sees the lowest weight, with a dismal expected IoU of 0.03. Second
lowest for the nouns, and typically lowest for all other parts-of-speech
also, is the ‘Instrumental’ case3.

Another category with clear differences is that of ‘Gender & Animacy’.
The easiest gender to inflect correctly appears to be either ‘Feminine’
or ‘Neuter’, especially for proper nouns and pronouns, respectively.
Determiners marked for gender tend to perform poorly regardless,
indicating that matching with the noun it modifies is difficult. Finally,
a clear ordering exists for the ‘Person’ category, with capacity to inflect
decreasing steadily going from 1st to 3rd person.
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Table B.1: Posterior of the dependent variables weights, resulting from a Bayesian linear regression for the IoU of the predicted and ground-truth
morphological tag sets. Uses same methodology as Table 3.1, which is also the null model.

Category Subcategory Part-of-

Speech

p(incl|data) Mean SD 95 CI LB 95 CI UB

Intercept 1.00 0.268 0.000 0.267 0.268

Parts-of-Speech

Adjective 0.00 0.000 0.000 0.000 0.000
Participle (Adj) 1.00 −0.080 0.005 −0.091 −0.070
Adposition 1.00 0.043 0.003 0.037 0.049
Adverb 0.00 0.000 0.000 0.000 0.000
Determiner 1.00 −0.123 0.004 −0.131 −0.115
Noun 0.00 0.000 0.000 0.000 0.000
Numeral 1.00 0.015 0.005 0.005 0.025
Pronoun 1.00 −0.150 0.005 −0.160 −0.142
Proper Noun 0.00 0.000 0.000 0.000 0.000
Verb 1.00 −0.076 0.005 −0.085 −0.067
Participle (Verb) 1.00 −0.064 0.015 −0.096 −0.035

Casing

Dative

Adjective 1.00 −0.021 0.003 −0.027 −0.016
Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Determiner 0.00 0.000 0.000 0.000 0.000
Noun 1.00 −0.012 0.003 −0.019 −0.006
Numeral 1.00 −0.073 0.008 −0.089 −0.057
Pronoun 1.00 −0.068 0.003 −0.075 −0.062
Proper Noun 1.00 −0.018 0.007 −0.031 −0.006

Essive

Adjective 1.00 0.001 0.003 −0.004 0.006
Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Determiner 1.00 0.019 0.003 0.014 0.024
Noun 1.00 −0.021 0.003 −0.027 −0.015
Numeral 1.00 −0.049 0.006 −0.061 −0.037
Pronoun 1.00 −0.097 0.004 −0.104 −0.090
Proper Noun 1.00 −0.046 0.006 −0.057 −0.035

Genitive

Adjective 1.00 −0.063 0.002 −0.067 −0.059
Participle (Adj) 1.00 −0.048 0.004 −0.055 −0.041
Determiner 1.00 −0.015 0.002 −0.020 −0.010
Noun 1.00 −0.027 0.003 −0.032 −0.022
Numeral 1.00 −0.070 0.005 −0.080 −0.061
Pronoun 1.00 −0.079 0.003 −0.086 −0.073
Proper Noun 1.00 −0.038 0.005 −0.049 −0.028

Instrumental

Adjective 1.00 −0.022 0.002 −0.027 −0.018
Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Determiner 0.00 0.000 0.000 0.000 0.000
Noun 1.00 −0.049 0.003 −0.055 −0.043
Numeral 0.00 0.000 0.000 0.000 0.000
Pronoun 1.00 −0.114 0.003 −0.120 −0.108
Proper Noun 1.00 −0.048 0.006 −0.060 −0.036

Nominative

Adjective 1.00 −0.024 0.002 −0.028 −0.020
Participle (Adj) 1.00 −0.020 0.004 −0.028 −0.013
Determiner 1.00 0.059 0.002 0.055 0.062
Noun 1.00 0.032 0.003 0.027 0.037
Numeral 1.00 0.016 0.004 0.007 0.024

continues on the next page
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Category Subcategory Part-of-

Speech

p(incl|data) Mean SD 95 CI LB 95 CI UB

Casing

Nominative

Pronoun 1.00 −0.057 0.003 −0.062 −0.051
Proper Noun 1.00 0.019 0.005 0.009 0.028

Vocative Noun 1.00 −0.237 0.012 −0.260 −0.214

Gender &

Animacy

Feminine

Determiner 1.00 −0.112 0.006 −0.125 −0.100
Noun 0.00 0.000 0.000 0.000 0.000
Pronoun 0.00 −0.000 0.000 0.000 0.000
Proper Noun 1.00 0.053 0.004 0.044 0.062

Masculine

Determiner 1.00 −0.139 0.007 −0.153 −0.127
Noun 0.00 −0.000 0.000 0.000 0.000
Pronoun 0.00 0.000 0.000 0.000 0.000
Proper Noun 1.00 0.015 0.005 0.005 0.024

Neuter

Determiner 1.00 −0.135 0.007 −0.149 −0.122
Noun 1.00 0.019 0.002 0.014 0.023
Pronoun 1.00 0.049 0.005 0.038 0.059
Proper Noun 0.00 0.000 0.000 0.000 0.000

Animate

Determiner 0.00 0.000 0.000 0.000 0.000
Noun 0.00 0.000 0.000 0.000 0.000
Pronoun 1.00 −0.050 0.005 −0.059 −0.040
Proper Noun 1.00 0.040 0.004 0.032 0.047

Inanimate

Determiner 1.00 0.006 0.004 −0.002 0.013
Noun 1.00 0.024 0.003 0.018 0.030
Pronoun 0.00 0.000 0.000 0.000 0.000
Proper Noun 0.00 −0.000 0.000 0.000 0.000

Number

Singular

Adjective 1.00 0.022 0.003 0.017 0.027
Participle (Adj) 1.00 0.016 0.003 0.010 0.020
Determiner 1.00 0.010 0.002 0.006 0.013
Noun 0.00 −0.000 0.000 0.000 0.000
Pronoun 1.00 −0.049 0.012 −0.071 −0.027
Proper Noun 0.00 0.000 0.000 0.000 0.000
Verb 0.00 0.000 0.000 0.000 0.000
Participle (Verb) 1.00 0.052 0.003 0.045 0.058

Plural

Adjective 1.00 0.019 0.003 0.014 0.024
Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Determiner 0.00 −0.000 0.000 0.000 0.000
Noun 1.00 0.021 0.002 0.018 0.025
Pronoun 1.00 −0.014 0.012 −0.037 0.008
Proper Noun 1.00 −0.027 0.004 −0.035 −0.019
Verb 1.00 −0.018 0.002 −0.022 −0.014
Participle (Verb) 0.00 0.000 0.000 0.000 0.000

Verbal

Perfective

Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Verb 1.00 −0.009 0.007 −0.024 0.004
Participle (Verb) 1.00 −0.046 0.003 −0.053 −0.040

Imperfective

Participle (Adj) 1.00 −0.018 0.005 −0.027 −0.009
Verb 1.00 −0.006 0.007 −0.021 0.007
Participle (Verb) 1.00 −0.052 0.003 −0.058 −0.045

Finite Verb 1.00 −0.067 0.006 −0.078 −0.056
continues on the next page
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Category Subcategory Part-of-

Speech

p(incl|data) Mean SD 95 CI LB 95 CI UB

Verbal

Nonfinite Verb 0.00 0.000 0.000 0.000 0.000

Conditional Verb 1.00 −0.109 0.007 −0.123 −0.096

Imp.-Jussive Verb 1.00 −0.029 0.006 −0.040 −0.019

Indicative Verb 1.00 −0.052 0.008 −0.069 −0.036

Present Tense

Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Verb 1.00 −0.023 0.006 −0.036 −0.011
Participle (Verb) 0.00 0.000 0.000 0.000 0.000

Past Tense Participle (Verb) 1.00 0.029 0.015 −0.001 0.057

Fut. Tense Verb 1.00 −0.052 0.007 −0.066 −0.039

Active

Participle (Adj) 0.00 0.000 0.000 0.000 0.000
Verb 1.00 0.030 0.005 0.018 0.035
Participle (Verb) 0.00 0.000 0.000 0.000 0.000

Passive Participle (Adj) 0.00 0.000 0.000 0.000 0.000

Comparison

Comp.

Adjective 1.00 0.020 0.002 0.016 0.023
Adverb 1.00 −0.053 0.007 −0.067 −0.039

Rel.

Adjective 1.00 0.113 0.002 0.108 0.117
Adverb 0.00 0.000 0.000 0.000 0.000

Person

1st

Determiner 0.00 0.000 0.000 0.000 0.000
Pronoun 1.00 0.076 0.004 0.068 0.082
Verb 1.00 −0.011 0.004 −0.018 −0.004

2nd

Determiner 1.00 −0.027 0.003 −0.033 −0.021
Pronoun 1.00 0.034 0.004 0.026 0.041
Verb 1.00 −0.041 0.004 −0.049 −0.034

3rd

Determiner 1.00 −0.066 0.003 −0.073 −0.061
Pronoun 0.00 0.000 0.000 0.000 0.000
Verb 1.00 −0.102 0.005 −0.111 −0.093

Observations 510,778
R2 0.142
p(M (null)|Data) 0.000
p(M (best)|Data) 0.987

The NMT system seems to prefer superlatives over their comparative
counterparts (e.g. greatest over greater), here represented by adjectives
and adverbs marked as ‘Rel.’ ‘Comp.’ in the ‘Comparison’ dimension. In
fact, superlative adjectives attract the largest estimated coefficient, with
the reduction caused by moving to comparatives (0.093) being larger
than most other coefficients.

Taking all information into account, the most problematic parts-of-speech
for this NMT system remain the pronouns and determiners. Again,
much like the PoS only model, nouns and adjectives perform best of all,
especially with certain features being present.

While this analysis allows for identifying troublesome morphological
features for conditional generation, despite high variance, it conflates
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mistranslations or malformed generations with the capacity to morpho-
logically inflect. For example, a different interpretation in word order
between the NMT system and the ground truth translation yields high
risk, despite a properly inflected word possibly being generated later
in the sentence. While one could limit the estimates to instances where
the model was capable of inferring the correct lemma, ensuring weights
indicate only the capacity of the NMT system to inflect said lexical
items (occurs in roughly 36% of instances), this does not inform the user
as to which morphological markers are erroneously produced instead.
Precisely this notion is captured by the confusion matrices presented in
Subsection 3.3.2.

B.2 Generating a Task Distribution
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Figure B.1: The mistakes, without considering the difference between ground-truth and predicted, and normalized over all values. In
essence, this just provides one with a notion of ‘these feature are often confused with each other’. Visually, this is the task distribution as
defined in Chapter 4, except marginalised from morphological tag sets to individual tags.
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C.1 Meta-learning & Morphological Cross

Transfer

Figure C.1: Verb inflection from finite to plural past tense as sampled using morphological cross-transfer.

Figure C.1 provides, in a nutshell, the core idea of morphological cross-
transfer. Two morphological tag sets are sampled as tasks, without
holding the lemma edit script constant, and a set of overlapping lemmas
are sampled also. Half the lemmas are present in the first task in the
support set, whereas the other half of the lemmas are present in the other.
In the query set, the roles flip. The red text highlights the word form in a
sentence. In practise, the model is only allowed to see preceding context,
but also has access to the entire sentence via the encoder. For successful
transfer from support set adaptation to query set generalization, the NMT
system must recognize from context the appropriate morphological task,
and extend the corresponding word-formation processes to lemmas it
has already seen, but in new word-forms.
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[83]: Raghu et al. (2020), ‘Rapid Learning
or Feature Reuse? Towards Understand-
ing the Effectiveness of MAML’

[90]: Arnold et al. (2021), ‘When maml
can adapt fast and how to assist when it
cannot’

1: This finding follows simply from the
derivative’s product rule:

d
dx

fl(fl−1(x)) = f ′
l (fl−1(x))·f ′

l−1(x)

C.1.1 Generalized GBML

Algorithm 2 GBML Iteration with Cross-transfer and Layer-wise Gradient
Modulation

for t = 1, . . . , #episodes per iteration do

Sample DS, DQ ∼ CrossTransfer(p (Taski, Taskj) ,D)
Generate task model θ

(epsiode)
0 ← θ(meta)

for k = 1, . . ., #shots per episode do

Compute Lτ

(
θ

(epsiode)
k , DS

)
Update θ

(epsiode)
k+1 ← θ

(epsiode)
k − α∇

θ
(epsiode)
k

L
(

θ
(epsiode)
k , DS

)
end for

Compute Lτ

(
θ

(epsiode)
K , DQ

)
end for

Update θ ← θ+ Optimizer
(
∇θ

∑
τ Lτ

(
θ

(epsiode)
k , DQ

)
, β
)

Update α← α+ Optimizer
(
∇α

∑
τ Lτ

(
θ

(epsiode)
k , DQ

)
, β
)

C.1.2 MAML, ANIL & BOIL: Feature Reuse or Fast

Adaptation

Again, the goal of GBML is to find a set of weights that simultaneously
provide strong initialization for many related tasks, but also one that
can adapt quickly to any individual task. Which of these properties
dominates, or whether both are present, remains open to debate. Of the
two, feature reuse is most relevant to this thesis; per definition it yields
higher zero-shot generalization.

In their review, Raghu et al. [83, -5em] find that MAML primarily search
for features general enough to be reused across tasks. When ablating the
task-specific model to adapt only the classification head, performance
degradation is negligible. Even when earlier layers are allowed to adapt
also, representation difference between the meta- and episode-model
dissipates in earlier layers. Otherwise, for MAML trained models, task-
agnostic inductive bias is encoded in the earliest layers, with task-specific
features existing exclusively in the final layers. While a finding general
to deep learning models, it lead Raghu et al. to propose the Almost No
Inner Loop (ANIL) variant of MAML. It strictly enforces feature reuse;
only the head is allowed to adapt, while the model’s ’body’ remains
task agnostic. A further benefit is the vastly diminished computational
cost of the inner loop, with typically only a minor fraction of the model
parameters needing to adapt.

Arnold, Iqbal, and Sha [90] largely corroborate the finding that depth
is important in GBML, with model performance drastically improving
with interleaved linear layers. They posit that extending depth allows for
earlier layers to generalize, while later layers add specialization. Where
their analysis differs, however, is the determination that later layers also
aid fast adaptation. The gradients passed to earlier layers are modulated
by the values of later layers1, implying that for successful meta-learning,
the primary function of the final layers in the meta-model is to help
earlier layers quickly adapt.
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Figure C.2: Conceptually, the difference
between MAML/ANIL (a) based tech-
niques and BOIL (b). Where the deci-
sion boundary rapidly shifts in (a), with
changes in the features being deferred,
(b) shows the exact opposite behaviour.
Taken from [91].

[91]: Oh et al. (2021), ‘{BOIL}: Towards
Representation Change for Few-shot
Learning’

[92]: Oswald et al. (2021), ‘Learning
where to learn: Gradient sparsity in meta
and continual learning’

[93]: Papineni et al. (2002), ‘Bleu: a
method for automatic evaluation of ma-
chine translation’

[94]: Kocmi et al. (2021), ‘To ship or not
to ship: An extensive evaluation of auto-
matic metrics for machine translation.’

Starkly contrasted to ANIL, and taking the findings of Arnold, Iqbal,
and Sha to an extreme, Oh et al. [91] propose Body Only Inner Loop
(BOIL). Here, the classification head is kept fixed, with only earlier layers
being allowed to adapt. Essentially, the final layer’s only function is to
warp the gradients passed to earlier layers in the model. Thus, using the
converse of the argument presented by Raghu et al., BOIL induces fast
adaptation of the representations. Their findings show that while earlier
layers still exhibit feature-reuse to some extent, only the penultimate
layer alters drastically during inner-loop adaptation. In various N -way,
K-shot experiments, BOIL proved preferable to MAML/ANIL from
1-shot onwards.

In an effort to settle the debate of feature reuse versus adaption, Oswald
et al. [92] endow a MAML meta-learner with an updateable parameter-
specific binary mask. Rather than a priori freezing a subset of the
model’s layers, whether a layer is part of the inner loop is simply a
parameter that is learned along with the model. In effect, the model
self-regulates the sparsity of its updates. Much like previous papers,
they find that as learning progresses, earlier layers are adapted less, with
only the later layers seeing dense updates. The induced sparsity has the
additional benefit of regularization, allowing the underlying model to
generalize outside seen domains, while inner loop learning rates and
steps can be easily accommodated without worry of overfit. Ultimately,
sparse-MAML is capable of outperforming not just MAML variants with
adjusted inner-loop regimens, e.g. ANIL or BOIL, but also ones equipped
with additional meta-hyper-optimization modules. The latter result is
especially surprising, as sparse-MAML is strictly less expressive.

C.2 NMT Metrics

Section C.2 makes use of a number of NMT metrics, some of which
are literature standards, others which are not. This subsection provides
some motivation for their inclusion, and some intuition as to their
interpretation.

▶ BLEU: since its introduction in 2002, and despite its many flaws,
BLEU [93] remains ubiquitous. Based on some hypothesis ỹ and the
ground-truth reference translation y, it assigns a score between 0
and 1 indicating, roughly, the proportion of n-grams present in y

also present in ỹ. The metric is computed per sentence, although
its essentially meaningless at this level, then aggregated by taking
the geometric mean of the sentence values, with short sentences
penalized. It is important to note that language needs to be pre-
tokenized before scoring, and it operates exclusively at the word-
level. To cite Kocmi et al. [94]’s recent review ,
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[95]: Post (2018), ‘A Call for Clarity in
Reporting BLEU Scores’

[96]: Popović (2017), ‘chrF++: words help-
ing character n-grams’
[97]: Popović (2015), ‘chrF: character n-
gram F-score for automatic MT evalua-
tion’

[98]: Rei et al. (2020), ‘COMET: A Neural
Framework for MT Evaluation’

Do not use BLEU, it is inferior to other metrics, and it
has been overused.

To that end, inclusion here is only done out of historic consideration,
allowing comparison to prior literature (like Ataman, Aziz, and
Birch [7]). Post’s [95] SacreBLEU implementation was used for all
BLEU values, a standardized set of practises allowing comparison
to literature

▶ BLEU - Lemma: identical to the above point, but the translations
are lemmatized prior to scoring. This removes all morphological
features and essentially captures how capable the NMT system is
at handling non-morphological language phenomena (e.g. lexical
choice, word order, syntax, etc.)

▶ ∆BLEU: the difference of the previous two points. This should
answer the converse of the previous point: to which extent do
lemma and word-form generation differ. If the value is close to 0, it
should indicate little trouble with inflecting the produced lemmas

▶ ChrF++: of all model free NMT metrics, Popović’s [96, 97] ChrF++
is typically tauted as the best. Unlike BLEU, sentence scores are
computed using both word and character n-grams, and the Fβ score
is computed instead, balancing precision and recall (β = 2 is sug-
gested, implying recall is deemed twice as important as precision).
It clearly has access to sub-word information, and increases should
indicate systems better capable of handling morphology. Kocmi
et al. [94] find it correlates well with human judgement, especially
relative to other ‘string-based’ metrics. Again, SacreBLEU is used.

▶ COMET & COMET MQM: unlike previous metrics, Rei et al.
[98]’s COMET computes scores using a pre-trained language model,
fine-tuned to predict human judgement scores when fed the source-
side and target-side reference translation, along with the candiate
translation. Since its introduction, it has been ranked among the
top performing systems in both the WMT‘20 [99] and WMT‘21
[100] shared tasks, and was Kocmi et al.’s best performing metric.
When referring to just COMET, this is a version built by regressing
WMT news task corpora annotated with direct assessments (human
judged comparisons of similarity between sentences on an analog
scale). COMET - MQM, on the other hand, uses data annotated with
the MQM grading scheme, which includes several categories of
possible errors, of which spelling is one [101]. This allows, to some
extent, leveraging sub-word information.
Both systems do not express absolute scores, but instead unbounded
z-values of a model’s quality assessment. For COMET typical scores
fall in the -1 to 1.5 range, while COMET - MQM falls within ±0.4.
This is, however, highly dependent on the language pair and the
evaluation dataset. Comparison across metrics or across test sets,
thus, is not recommended.

C.3 Additional Experimental Results
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Figure C.3: In the style of Figure 4.8, but now presenting the 1 stage fine-tuned model versus the pre-trained model as baseline.
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Figure C.4: In the style of Figure 4.8, but now presenting the 2 stage fine-tuned model and the multitask model versus the 1 stage
fine-tuned model as baseline. The 2 stage fine-tuned plot for the IID data is missing.
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Figure C.5: In the style of Figure 4.8, but now presenting the 2 stage meta-learning adapted model at various values of η versus the 1
stage fine-tuned model as baseline.
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Figure C.6: In the style of Figure 4.8, but now with the character bigram-F1 score, and presenting the 2 stage meta-learning adapted
model at various values of η versus the 1 stage fine-tuned model as baseline.
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[74] Toms Bergmanis and Mārcis Pinnis. ‘Facilitating terminology translation with target lemma annota-
tions’. In: arXiv preprint arXiv:2101.10035 (2021) (cited on pages 32, 33).

https://jasp-stats.org/
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D19-5619
https://doi.org/10.18653/v1/P18-2049
https://doi.org/10.18653/v1/P19-1294


[75] Josef Jon et al. ‘End-to-End Lexically Constrained Machine Translation for Morphologically Rich
Languages’. In: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers). Online:
Association for Computational Linguistics, Aug. 2021, pp. 4019–4033. doi: 10.18653/v1/2021.acl-
long.311 (cited on page 33).

[76] Weĳia Xu and Marine Carpuat. ‘Rule-based Morphological Inflection Improves Neural Terminology
Translation’. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing.
Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, Nov. 2021,
pp. 5902–5914. doi: 10.18653/v1/2021.emnlp-main.477 (cited on page 33).

[77] Chelsea Finn, Pieter Abbeel, and Sergey Levine. ‘Model-Agnostic Meta-Learning for Fast Adaptation
of Deep Networks’. In: Proceedings of the 34th International Conference on Machine Learning. Ed. by
Doina Precup and Yee Whye Teh. Vol. 70. Proceedings of Machine Learning Research. PMLR, June
2017, pp. 1126–1135 (cited on page 34).

[78] Jiatao Gu et al. ‘Meta-learning for low-resource neural machine translation’. In: arXiv preprint
arXiv:1808.08437 (2018) (cited on page 34).

[79] Nier Wu et al. ‘Low-Resource Neural Machine Translation Based on Improved Reptile Meta-learning
Method’. In: China Conference on Machine Translation. Springer. 2021, pp. 39–50 (cited on page 34).

[80] Alex Nichol, Joshua Achiam, and John Schulman. ‘On First-Order Meta-Learning Algorithms’. In:
CoRR abs/1803.02999 (2018) (cited on page 35).

[81] Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. ‘On the Convergence Theory of Gradient-
Based Model-Agnostic Meta-Learning Algorithms’. In: CoRR abs/1908.10400 (2019) (cited on page 35).

[82] Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. ‘How to train your MAML’. In: CoRR
abs/1810.09502 (2018) (cited on page 35).

[83] Aniruddh Raghu et al. ‘Rapid Learning or Feature Reuse? Towards Understanding the Effectiveness
of MAML’. In: International Conference on Learning Representations. 2020 (cited on pages 35, 38, 54, 55).

[84] Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai. ‘How Does the Task Landscape Affect MAML
Performance?’ In: arXiv preprint arXiv:2010.14672 (2020) (cited on page 36).

[85] Sébastien Arnold et al. ‘Uniform Sampling over Episode Difficulty’. In: Advances in Neural Information
Processing Systems 34 (2021), pp. 1481–1493 (cited on page 36).

[86] Chenghao Liu et al. ‘Adaptive task sampling for meta-learning’. In: European Conference on Computer
Vision. Springer. 2020, pp. 752–769 (cited on page 36).

[87] Marta R Costa-jussà et al. ‘No Language Left Behind: Scaling Human-Centered Machine Translation’.
In: arXiv e-prints (2022), arXiv–2207 (cited on page 37).

[88] Antreas Antoniou, Harrison Edwards, and Amos Storkey. ‘How to train your MAML’. In: arXiv
preprint arXiv:1810.09502 (2018) (cited on page 38).

[89] NLLB Team et al. ‘No Language Left Behind: Scaling Human-Centered Machine Translation’. In: ()
(cited on page 44).

[90] Sébastien Arnold, Shariq Iqbal, and Fei Sha. ‘When maml can adapt fast and how to assist when it
cannot’. In: International Conference on Artificial Intelligence and Statistics. PMLR. 2021, pp. 244–252
(cited on pages 54, 55).

[91] Jaehoon Oh et al. ‘{BOIL}: Towards Representation Change for Few-shot Learning’. In: International
Conference on Learning Representations. 2021 (cited on page 55).

[92] Johannes Von Oswald et al. ‘Learning where to learn: Gradient sparsity in meta and continual
learning’. In: Advances in Neural Information Processing Systems. Ed. by A. Beygelzimer et al. 2021 (cited
on page 55).

[93] Kishore Papineni et al. ‘Bleu: a method for automatic evaluation of machine translation’. In: Proceedings
of the 40th annual meeting of the Association for Computational Linguistics. 2002, pp. 311–318 (cited on
page 55).

https://doi.org/10.18653/v1/2021.acl-long.311
https://doi.org/10.18653/v1/2021.acl-long.311
https://doi.org/10.18653/v1/2021.emnlp-main.477


[94] Tom Kocmi et al. ‘To ship or not to ship: An extensive evaluation of automatic metrics for machine
translation.’ In: Proceedings of the 6th Conference on Machine Translation of the Association for Computational
Linguistics. 2021, pp. 478–494 (cited on pages 55, 56).

[95] Matt Post. ‘A Call for Clarity in Reporting BLEU Scores’. In: Proceedings of the Third Conference on
Machine Translation: Research Papers. Belgium, Brussels: Association for Computational Linguistics,
Oct. 2018, pp. 186–191 (cited on page 56).

[96] Maja Popović. ‘chrF++: words helping character n-grams’. In: Proceedings of the Second Conference on
Machine Translation. Copenhagen, Denmark: Association for Computational Linguistics, Sept. 2017,
pp. 612–618. doi: 10.18653/v1/W17-4770 (cited on page 56).

[97] Maja Popović. ‘chrF: character n-gram F-score for automatic MT evaluation’. In: Proceedings of the Tenth
Workshop on Statistical Machine Translation. Lisbon, Portugal: Association for Computational Linguistics,
Sept. 2015, pp. 392–395. doi: 10.18653/v1/W15-3049 (cited on page 56).

[98] Ricardo Rei et al. ‘COMET: A Neural Framework for MT Evaluation’. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Online: Association for
Computational Linguistics, Nov. 2020, pp. 2685–2702. doi: 10.18653/v1/2020.emnlp-main.213
(cited on page 56).

[99] Nitika Mathur et al. ‘Results of the WMT20 Metrics Shared Task’. In: Proceedings of the Fifth Conference
on Machine Translation. Online: Association for Computational Linguistics, Nov. 2020, pp. 688–725
(cited on page 56).

[100] Markus Freitag et al. ‘Results of the WMT21 Metrics Shared Task: Evaluating Metrics with Expert-based
Human Evaluations on TED and News Domain’. In: Proceedings of the Sixth Conference on Machine
Translation. Online: Association for Computational Linguistics, Nov. 2021, pp. 733–774 (cited on
page 56).

[101] Markus Freitag et al. ‘Experts, errors, and context: A large-scale study of human evaluation for machine
translation’. In: Transactions of the Association for Computational Linguistics 9 (2021), pp. 1460–1474 (cited
on page 56).

https://doi.org/10.18653/v1/W17-4770
https://doi.org/10.18653/v1/W15-3049
https://doi.org/10.18653/v1/2020.emnlp-main.213

	Contents
	Introduction
	Outline & Contributions

	Outline & Contributions
	Morphological Tagging and Lemmatization in Context
	Morphology

	Morphology
	Morphological Typology
	Morphological Annotation
	Automated Morphological Tagging & Lemmatization in Context

	Tagging & Lemmatization
	Lemmatization as Classification
	Architectures
	Methods
	Results
	Discussion

	Discussion
	Evaluating the Morphological Awareness of NMT Systems
	Related Work

	Related Work
	Conditional Generation of Morphologically Annotated Text

	Morphologically Annotated Generation
	Effect of Morphological Features on Generating Czech Translations

	Czech Morphology Effect on Translation
	Identifying Problematic Morphological Features
	Identifying Common Confusion
	Discussion

	Discussion
	Adapting NMT Systems for Morphological Awareness
	Related Work

	Related Work
	Informed Tokenizers & Architectures
	Data/Objective Augmentation
	Source-side Augmentation
	Gradient-based Meta-learning

	GBML
	Learning Copy-and-Inflect via Morphological Cross Transfer

	Morphological Cross Transfer
	Methods
	Results
	Discussion

	Discussion
	Conclusion
	Appendix
	Morphological Tagging and Lemmatization in Context
	Evaluating the Morphological Awareness of NMT Systems
	Identifying Problematic Morphological Features, Cont.

	Identifying Problematic Morphological Features, Cont.
	Generating a Task Distribution

	Generating a Task Distribution
	Adapting NMT Systems for Morphological Awareness
	Meta-learning & Morphological Cross Transfer

	Meta-learning & Morphological Cross Transfer
	Generalized GBML
	MAML, ANIL & BOIL: Feature Reuse or Fast Adaptation
	NMT Metrics

	NMT Metrics
	Additional Experimental Results

	Additional Experimental Results

	References

